
PROBLEM OF THE WEEK
Solution of Problem No. 3 (Spring 2014 Series)

Solution 1 by Bennett Marsh, Purdue Junior, Physics/Math

By the definition of the limit, for any ε > 0 there exists some K(ε) such that if x > K(ε),
then |f(x) + f ′(x) − A| < ε. We now prove a few facts about f(x);

1. There exists some t > K(ε) such that f(t) < A + ε. Suppose otherwise. Then for all
x > K(ε/2), f ′(x) < A + ε/2 − f(x) < −ε/2. But then eventually, f(x) must cross
over A + ε, contradicting the assumption.

2. For all x > t, f(x) < A + ε. Otherwise, by continuity, f(x) must hit A + ε from below
with nonnegative slope, making f(x) + f ′(x) ≥ A + ε, a contradiction.

3. By flipping the signs in the above arguments, it can be seen that there exists some
s > K(ε) such that f(x) > A − ε for all x > s.

4. Therefore, |f(x) − A| ≤ ε for all x > max(s, t).

Since ε was arbitrary, this proves that lim
x→∞

f(x) = A.

Sketch of Solution 2: (A composite from several solvers)

L’Hopital and the fact that lim
x→∞

g′(x)

ex

= A implies lim
x→∞

g(x)

ex

= A, applied to

g(x) = exf(x) (note g′(x) = ex(f(x) + f ′(x))) gives lim
x→∞

f(x) = A.
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