
PROBLEM OF THE WEEK

Solution of Problem No. 4 (Spring 2014 Series)

Problem:

Let p be a polynomial in the variables x1, x2, . . . , xn. Show that if there is a

number C such that |p(x1, . . . , xn)| ≤ C for all real x1, x2, . . . , xn then there is a

number r such that p(x1, . . . , xn) = r for all x1, . . . , xn.

Solution 1: (by Bennett Marsh, Physics/Math. Junior, Purdue University)

Assume that |p(~x)| ≤ C for all ~x ∈ R
n, and that there exist ~x1, ~x2 such that p(~x1) 6= p(~x2).

Define f(t) = p(~x1 +(~x2−~x1)t). Now f(t) is a polynomial in t, and since f(0) 6= f(1), it is

nonconstant, say of degree m > 0. Then letting f(t) =
m∑

k=0

aktk, we see that lim
t→∞

f(t)/tm =

am 6= 0. But this implies that lim
t→∞

f(t) = ±∞, so f(t), and thus also p(~x), is unbounded.

This contradicts the initial assumption, so p(~x) must in fact be constant.

Solution 2: (by Craig Schroeder, UCLA Postdoc)

Fix x1, . . . , xn and let f(t) = p(x1t, . . . , xnt). Then f is a univariate polynomial which

is bounded and so f(1) = f(0), i.e. p(x1, x2, . . . , xn) = p(0, 0, . . . , 0). [Then use that

bounded polynomials in one variable are bounded].

The problem was also solved by:
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Perfetti Paolo (Roma, Italy), M. Rajeswari (TA, India), Sorin Rubinstein (TAU faculty,

Tel Aviv, Israel), Craig Schroeder (Postdoc. UCLA), David Stoner (HS Student, Aiken,

S. Carolina),


