PROBLEM OF THE WEEK

Solution of Problem No. 12 (Spring 2015 Series)

Problem:
What is the maximum value of $\sum_{i<j}\left|P_{i}-P_{j}\right|^{2}$ over all possible choices of $2 n$ points on the ellipsoid $x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{3^{2}}=1$.
Remark: It is shown in POW problem 5, Fall 2009 (solution online) that for the analogous problem for the unit sphere the maximum value is attained if and only if the centroid of the P_{i} is the origin.

Solution by Bennett Marsh, Senior. Physics \& Math, Purdue University

We have

$$
\begin{aligned}
\sum_{i<j}\left|P_{i}-P_{j}\right|^{2} & =\frac{1}{2} \sum_{i, j=1}^{2 n}\left(\left|P_{i}\right|^{2}+\left|P_{j}\right|^{2}-2 P_{i} \cdot P_{j}\right) \\
& =\frac{1}{2}\left[2 n \sum_{i}\left|P_{i}\right|^{2}+2 n \sum_{j}\left|P_{j}\right|^{2}-2 \sum_{i j} P_{i} \cdot P_{j}\right] \\
& =2 n \sum_{i}\left|P_{i}\right|^{2}-\sum_{i} P_{i} \cdot \sum_{j} P_{j} \\
& =2 n \sum_{i=1}^{2 n}\left|P_{i}\right|^{2}-\left|\sum_{i=1}^{2 n} P_{i}\right|^{2}
\end{aligned}
$$

The first term is clearly maximized when all points P_{i} have the maximum distance from the origin of 3 . The second term is minimized when $\sum P_{i}=0$. We can satisfy both of these simultaneously if n points are chosen to be $(0,0,3)$ and the other n points are chosen to be $(0,0,-3)$. In this case,

$$
\sum_{i<j}\left|P_{i}-P_{j}\right|^{2}=2 n \cdot 2 n \cdot 3^{2}-0=36 n^{2}
$$

The problem was also solved by:

Undergraduates: Victor Lee (Fr. CS), Jiaqi Zhou (Math)

Others: Hongwei Chen (Professor, Christopher Newport Univ. Virginia), Hubert Desprez (Paris, France), Zhiwei Fang (Tianjin University of Finance and Economics, China), Matthew Lim, Sorin Rubinstein (TAU faculty, Tel Aviv, Israel), Craig Schroeder (Postdoc. UCLA), Tairan Yuwen (Postdoc, Chemistry, Purdue U)

