
PROBLEM OF THE WEEK

Solution of Problem No. 2 (Spring 2015 Series)

Problem:

Let f be a real valued function defined on D = {(i, j) : i and j are integers in

[−2015, 2015]} such that

f(i, j) = (1/4)[f(i + 1, j) + f(i − 1, j) + f(i, j + 1) + f(i, j − 1)]

when i and j are both in (−2015, 2015) and f(i, j) = 0 if one or both of |i|, |j| is

2015. Prove f(i, j) = 0 for all (i, j) in D.

Solution by Victor Lee, Computer Science at Purdue

Since the image of f is a finite set, f must attain max and min in D. Suppose

f(i, j) = M is max. Assume |i| < 2015 and |j| < 2015, otherwise, M = 0. f(i−1, j), f(i+

1, j), f(i, j− 1), f(i, j +1) are all less than or equal to M , but their average is f(i, j) = M ,

so f(i − 1, j) = f(i + 1, j) = f(i, j − 1) = f(i, j + 1) = M . Continue this method to

f(i− 1, j), we get f(i− 2, j) = M . Repeat this, we will get M = 0 as we touch the side of

D. Therefore, f ≤ 0. By the same argument, min is also zero, so f ≥ 0. So, f = 0 on D.
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