PROBLEM OF THE WEEK
Solution of Problem No. 7 (Spring 2015 Series)

Problem:

Let w be the greatest common divisor of m and n. Show that $3^{w}-1$ is the greatest common divisor of $3^{m}-1$ and $3^{n}-1$.

Solution by Craig Schroeder, Postdoc, UCLA

If $m=n$, the statement is trivial.
If $m=0$, then $w=\operatorname{gcd}(0, n)=n$ and $\operatorname{gcd}\left(3^{m}-1,3^{n}-1\right)=\operatorname{gcd}\left(0,3^{n}-1\right)=3^{n}-1=3^{w}-1$. The case $n=0$ is similar.
Finally, consider the case $n>m>0(m>n>0$ is similar $)$. Note that

$$
\begin{aligned}
\operatorname{gcd}\left(3^{m}-1,3^{n}-1\right) & =\operatorname{gcd}\left(3^{m}-1,\left(3^{n}-1\right)-\left(3^{m}-1\right)\right)=\operatorname{gcd}\left(3^{m}-1,3^{n}-3^{m}\right) \\
& =\operatorname{gcd}\left(3^{m}-1,\left(3^{n-m}-1\right) 3^{m}\right)=\operatorname{gcd}\left(3^{m}-1,3^{n-m}-1\right)
\end{aligned}
$$

and

$$
\operatorname{gcd}(m, n)=\operatorname{gcd}(m, n-m)
$$

This process can be repeated until $m=n$, at which point the conclusion is obvious.

The problem was also solved by:

Undergraduates: Victor Lee (Fr. CS), Rustam Orazaliyev (Sr. Actuarial Sci), Jiaqi Zhou (Math)

Others: KD Harald Bensom (Germany), M.V. Channakeshava (Retired Teacher, Bangalore), Hongwei Chen (Professor, Christopher Newport Univ. Virginia), Sandipan Dey (UMBC Alumni), Tom Engelsman (Tampa, FL), Rick Shilling \& Bruce Grayson (Orlando, FL), Chung-Chin Jian (Postdoc, National Taiwan U), Tin Lam (Engineer, St. Louis, MO), Steven Landy (Physics Faculty, IUPUI), Wei-Xiang Lien (Miaoli, Taiwan), Matthew Lim, Adem Limani (Student, U of Lund, Sweden), Sorin Rubinstein (TAU faculty, Tel Aviv, Israel), Luciano Santos (Teacher, Portugal), Mehtaab Sawhney (HS Student, Commack HS, NY), George-Petru Scarlatescu (Student, Pitesti, Romania), Mehdi Sonthonnax (New York), David Stoner (HS Student, Aiken, S. Carolina), Feng Tian (Student, Duke U), Tairan Yuwen (Postdoc, Chemistry, Purdue U)

