
PROBLEM OF THE WEEK

Solution of Problem No. 8 (Spring 2015 Series)

Problem:

Let f be a continuous strictly decreasing concave (down) function on [0, 1] which

is twice differentiable on (0, 1) and satisfies f(0) = 1 and f(1) = 0. Find, with

proof, the point(s) on {(x, y, z) : x + y + z = 1, x, y, z ≥ 0} where f(x)f(y)f(z) is

largest.

Solution by Luciano dos Santos, Teacher, Lisboa, Portugal

As f is concave, we can apply the Jensen’s inequality: f

(

x + y + z

3

)

≥
f(x) + f(y) + f(z)

3
.

As x + y + z = 1, f

(

1

3

)

≥
f(x) + f(y) + f(z)

3
. The equality holds if x = y = z.

But
f(x) + f(y) + f(z)

3
≥ 3

√

f(x)f(y)f(z) (AM-GM inequality). The equality holds if

[and only if] f(x) = f(y) = f(z). So the maximum value of f(x)f(y)f(z) is f

(

1

3

)3

(when

x = y = z =
1

3
).
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