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The KPZ Universality Class

The Kardar-Parisi-Zhang universality class includes of a class of growing
iInterfaces with height functions satisfying the following:

1. Growth smooths out over time
2. The growth rate is rotationally invariant and slope dependent
3. Independent and identically distributed noise roughens the interface

Randomly growing interfaces that are governed by slope-dependent
growth, smoothing, and white-noise random forcing are conjectured to
lie in the KPZ Universality Class, meaning that

h(t, t2/32) — tLp(z)
n(z)tl/3

> Distribution(hg)

where the distribution on the right hand side depends only on the initial
condition hg. The terms p(x) and n(x) are model-dependent terms similar
to mean and standard deviation. Here are some real world examples
where the Kardar-Parisi-Zhang universality class can be applied:
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Figure 1. Real-world examples of KPZ behavior include bacterial colony growth

For some choices of initial condition kg, the limiting distribution comes
from the Tracy-Widom family of distributions, which describe the fluctu-
ations of the largest eigenvalues of certain random matrices.

Because of universality, we may get insight into the entire KPZ Univer-
sality Class by studying any model in the KPZ Universality class. Thus, it
makes sense to investigate the simplest models. One such model is the
last passage percolation (LPP).

Figure 2. Forest fire growth and traffic flow patters can also be modeled through KPZ
behavior.

Last Passage Percolation

Last Passage Percolation (LPP) is a probabilistic model used to study the
geometry of optimal paths through random environments. Despite the
underlying randomness and microscopic details of the weights assigned
to each point or edge, these systems often exhibit universal statistical
behavior on a macroscopic scale.

In its classical formulation, LPP is defined on the lattice Z2,,, where each
point (7, 7) is assigned an i.i.d. nonnegative random weight w(z, 7). A path
is constrained to move only rightward or upward. The last passage time
from (0,0) to (m,n) is given by:

Glm,n) = ﬂ:(O,(g?i}Em,n) (Z]z)éww(%])

This object G(m,n) represents the maximal total weight collected along
a directed up-right path. The path that achieves this maximum is called
the geodesic.
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Figure 3. A realization of the LPP model on a 2D grid. The black staircase path is the
geodesic from (0,0) to (m,n) of the competition interface (the boundary that
separates different geodesic paths).

Interestingly, LPP is mathematically equivalent to a classical tandem
queueing system. Here, each row in the grid corresponds to a service
station, and each column corresponds to a customer. The value w(i, 7)
represents the service time of customer 5 at station ¢. Customers pro-
ceed through the queues in order, and cannot be served until both their
previous service has completed and the station is free. The departure
fime D(i, 7) satishes:

This recurrence matches the LPP definition of G(i, 5), making G(z,7) =

D(i,7) a valid identity. Thus, LPP models the departure time of the last
customer from the final queue.

Queueing Theory

Queueing theory provides a powerful framework for modeling systems
in which entities (often called "customers”) arrive over time and require
service from a server. These models are governed by two fundamental
sequences:

= Inter-arrival times (a;): the time between the arrival of customer i — 1
and customer 1.

= Service times (s;): the time it takes to serve customer .
From these inputs, one derives important performance quantities:

= Waiting time w;: time spent waiting before service begins.
= Sojourn time J; = w; + s;: total time in the system.

= |Inter-departure time D;: the time between the departures of
customers ¢ — 1 and 1.

The system evolves according to simple recursive rules. For example,
assuming customer 1 arrives to an empty queue:

Ty = s+ (Jp—1 —ag) "
This reflects that a customer only waits if the previous customer hasn’t
vet departed.

Burke’'s Theorem plays a central role in equilibrium queueing theory:
foran M/M/1 queue (exponentially distributed inter-arrival and service
times with A < ), the output inter-departure process is also an i.i.d. ex-
ponential process with rate A—the same as the arrival process.

Multi-class queues generalize this framework by allowing customers
from different classes to have different service distributions. Suppose
we have n classes, and let I' be the inter-arrival times for class i, with

I ~ EXp(pi_l) for p1 < pa < --- < pp. Then define:

D(I) = (D<1>(11), p@2 Y, ... pman ,11))

Using an inductive application of Burke's theorem, one can show that the
marginal distribution of each D) is again EXp(pi_l). This forms a steady-
state queueing process with remarkable stability properties. These multi-
class dynamics allow researchers to simulate complex queueing systems
and understand long-term statistical behavior across classes.
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Figure 4. Multi-class Queue of the Departure Times for 3 Priority Classes.
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Results
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Figure 5. Recorded Frequency of Mismatch Between the Interdeparture Time and
Service Time for the 998th Customer.
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Figure 6. Recorded Frequency of Mismatch Between the Interdeparture Time and
Service Time for the 999th Customer..

Figure /. Joint Histogram of the Mismatch Frequency Between the Service and
Interdeparture Times of the 998th and 999th Customer.

Future Directions

Moving forward, we aim to study the geometry of this transition more
rigorously by analyzing the competition interface, a quantity that captures
where one class begins to dominate in the service order. In tandem, we
will examine the associated dual service times to better understand queue
dynamics near criticality. This could lead to a deeper probabilistic inter-
pretation of phase transitions in queuing systems and their KPZ connec-
tions.



