Algorithms for Julia Sets

Augusto Butkewitsch, Alex Tu

Introduction

Rendering the infinitely complex
figures of fractals presents many
computational hurdles, especially
for real-time display in
non-dedicated hardware.

In our research, we focus on
exploring and optimizing rendering
algorithms and techniques for
escape-time fractals, such as Julia
and Mandelbrot sets. Our aim is to
create an interactive web platform
for students to easily and
dynamically explore these
structures, enhancing their
mathematical engagement.

Background

Fractals are often observed in our
natural world, ranging from
snowflake patterns to lightning
bolts and even galaxies. They
exhibit self-similarity and infinite
complexity.

One well-known class of fractals,
Julia Sets- the visualization of
which is our current focus- is
generated by iterating complex
functions of the form:

fe(z)=2"+c¢

Typical rendering approaches
iInvolve iterating through each
pixel on the screen as a
coordinate in the complex plane.
This proved to be computationally
expensive, especially at higher
resolutions. This prompted our
project to facilitate visualizing
these shapes and generating
greater interest in their creation.

Initial Approach

[Pixels on screen represent coordinates on the
complex plane

d Pixel color is determined by escape rate: how
fast that coordinate, under a function, diverges.

Algorithm 1 Mandelbrot Function

1: function MandelbrotFunction(z, y)
2 iteration < ()

3 z <+ (0,0)

4 for 2 + 0 to maxlterations do
5: z— zXz+ (z,y)

6 if |z| > {threshold} then

7 break

8: iteration < iteration + 1
9: end for

10: return iteration

11: end function

Example pseudocode of a Mandelbrot function

1 Higher resolution & Degrading performance

React JS

3 2D Julia Set visualizer using the iterative pixel coloring -

approach as mentioned above

d Used vanilla javascript for the computations, and React

for the canvas visualizations

4 Ul allows for a varying complex parameter ¢, and the

ability to pan and zoom in/out

d Pixel coloring

to “escape”

c =-0.522 + 0.515i
maxlterations = 500, renders in 84ms

small numbers

c=-0.75+0i
maxlterations = 500, renders in 278ms

algorithm based off of
whether or not they
escaped and how
many iterations it took

d Flaw: visualization
through this method is
finite; the computer
loses precision at very

27

Lifting Algorithms

Algorithm 2 Combinatorial Julia Graph via Path-Lifting

AS Opposed to the nOISy Require: c € C, an integer N >0

I : 1. R« HV1i+4l
plxel based COIOrIng’ 2: Choose 8 > R and simple paths d: [8% +¢] — [8], e, ez the upper/lower half-circles on |z| = 8,
I ifti ' all avoiding the post—critical set P..
USI ng a Ilftl ng algorlth m 3 > Initialize level-0 vertices at the circle |z| = 3
IS an alternative. & Vi 15:-£)
6: forn<0to N —1do
7 ‘/next — @
Takes a backward S fmalluRikEd > 7(u) = B by construction

9: > Lift the radial path d one more iterate
0v < LIFTPATH(f 1, v, d)

combin.atorial approach, E o)
and builds a structure of if fI(v) = £ then

> Lift upper half-circle e;

pre-lmageS i: elsgv < LiIFTPATH(f, v, €1)
16: > Lift lower half-circle e;
17: nv < LIFTPATH(f, v, e3)

Reveals the hidden B L B s

shape of the Julia set by & auap © Vo 0 00

22: V < Vayext

tracing how points could . ena for
: return (V, E
have changed, layer by ~=m®9
e LiftPath(g,v,7) denotes the endpoint of the unique lift of the path 7 starting at v under the covering
layer. .y

e After N iterations, (V, E) is a finite approximation of the infinite combinatorial graph whose infinite
walks encode points of the Julia set.
Pseudocode for Lifting Algorithm Implementation

Unity C#

The initial approach to rendering 3D fractals
consisted of basic cube meshes placed and
sized recursively.

A This yielded poor performance overall,
alongside an expensive creation subroutine.

4 Runs on local hardware, drawing polygons.

Fractal in Unity 3D: Cube Tetrahedron

Raymarching

Speed Multiplier: 0.97x s D
Fractal [Tab]: Menger Sponge Ty apdid " p v U

Color Mode [C]: Solid Hue sl 0

FPS: 255.1

Casts a ray, iteratively “marches” a
number of steps, within some distance
of the nearest surface.

Soli

1 More efficient for mathematical shapes
such as fractals, with an undetermined
polygon count.

1 Runs on local hardware & web
browser.

1 Interactive online
viewer, with control
over different fractal
parameters and
custom viewports.

[=]

G}

https://augusto-butkewitsch.github.io/raymarch

Sierpinski Tetrahedron Fractal with Raymarching

PURDUE

UNIVERSITY

John Martinson Honors College

Professor Mummert’s image for the Lifting algorithm
fe fe fe

g = .. =% £B K gPge
1o i ld
Su 4 . L 3

Lifting diagrams for 0 (above) and n (below).

T R +4 ELd B2 e

7 leis

nv . -

Conclusion

[Fractals provide an unigue avenue to explore
both the mathematical properties of recursion and
several complex computer graphics & rendering
techniques.

i) ?J i) ,:_7)2 = hd

A There is a large variety of fractals that can be
explored, both in two and three dimensions.

d Visualization approaches and their optimizations
are largely case dependent.

Future Goals

A Our algorithms can surely be optimized further,
allowing not only for faster rendering, but also for
the visualization of more complex fractals.

d A greater, more interactive web interface for
visualizing all our findings (and more fractals) in
one place would aid us in our objective.

Acknowledgements

Our project would not have been possible without:

d Shengwei Qiu, our graduate TA
A Dr. Philip Mummert, our faculty mentor

References

[1] Johnson, A., Madden, K., & Sahin, A. (2013).
Discovering Discrete Dynamical Systems. MAA
Press.

[2] Mandelbrot, B.B. (2002). Chapter 3 Fractals ,
Graphics , and Mathematics Education 1.

[3] Churchill, M. (2004). Introduction to Fractal
Geometry.

