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Future Goals
❏ Our algorithms can surely be optimized further, 

allowing not only for faster rendering, but also for 
the visualization of more complex fractals.

❏ A greater, more interactive web interface for 
visualizing all our findings (and more fractals)  in 
one place would aid us in our objective.

❏ 2D Julia Set visualizer using the iterative pixel coloring 
approach as mentioned above

❏ Used vanilla javascript for the computations, and React 
for the canvas visualizations

❏ UI allows for a varying complex parameter c, and the 
ability to pan and zoom in/out

❏ The initial approach to rendering 3D fractals 
consisted of basic cube meshes placed and 
sized recursively.

❏ This yielded poor performance overall, 
alongside an expensive creation subroutine.
 

❏ Runs on local hardware, drawing polygons.

c = -0.522 + 0.515i
maxIterations = 500, renders in 84ms

Raymarching

Rendering the infinitely complex 
figures of fractals presents many 
computational hurdles, especially 
for real-time display in 
non-dedicated hardware.

In our research, we focus on 
exploring and optimizing rendering 
algorithms and techniques for 
escape-time fractals, such as Julia 
and Mandelbrot sets. Our aim is to 
create an interactive web platform 
for students to easily and 
dynamically explore these 
structures, enhancing their 
mathematical engagement.

Fractals are often observed in our 
natural world, ranging from 
snowflake patterns to lightning 
bolts and even galaxies. They 
exhibit self-similarity and infinite 
complexity.

One well-known class of fractals, 
Julia Sets- the visualization of
which is our current focus- is 
generated by iterating complex 
functions of the form:

Typical rendering approaches 
involve iterating through each 
pixel on the screen as a 
coordinate in the complex plane. 
This proved to be computationally 
expensive, especially at higher 
resolutions. This prompted our 
project to facilitate visualizing 
these shapes and generating 
greater interest in their creation.

❏ Casts a ray, iteratively “marches” a 
number of steps, within some distance 
of the nearest surface.

❏ More efficient for mathematical shapes 
such as fractals, with an undetermined 
polygon count.
 

❏ Runs on local hardware & web 
browser.

Fractal in Unity 3D: Cube Tetrahedron

Menger Sponge Fractal with Raymarching

Sierpiński Tetrahedron Fractal with Raymarching

❏ Interactive online 
viewer, with control 
over different fractal 
parameters and 
custom viewports.

https://augusto-butkewitsch.github.io/raymarch

❏ Pixels on screen represent coordinates on the 
complex plane

❏ Pixel color is determined by escape rate: how 
fast that coordinate, under a function, diverges.

Example pseudocode of a Mandelbrot function

❏ Higher resolution ⇔ Degrading performance

❏ Fractals provide an unique avenue to explore 
both the mathematical properties of recursion and 
several complex computer graphics & rendering 
techniques.

❏ There is a large variety of fractals that can be 
explored, both in two and three dimensions.

❏ Visualization approaches and their optimizations 
are largely case dependent.

c = -0.75 + 0i
maxIterations = 500, renders in 278ms

❏ Pixel coloring 
algorithm based off of 
whether or not they 
escaped and how 
many iterations it took 
to “escape”

❏ Flaw: visualization 
through this method is 
finite; the computer 
loses precision at very 
small numbers

https://julia-set-visualizer.vercel.app/

❏ As opposed to the noisy 
pixel based coloring, 
using a lifting algorithm 
is an alternative.

❏ Takes a backward 
combinatorial approach, 
and builds a structure of 
pre-images.

❏ Reveals the hidden 
shape of the Julia set by 
tracing how points could 
have changed, layer by 
layer.

Professor Mummert’s image for the Lifting algorithm

Pseudocode for Lifting Algorithm Implementation


