
Algorithms for Julia Sets
Augusto Butkewitsch, Alex Tu

Introduction

Background

Initial Approach

React JS Unity C#

Conclusion

Acknowledgements

References

Our project would not have been possible without:

❏ Shengwei Qiu, our graduate TA
❏ Dr. Philip Mummert, our faculty mentor

Lifting Algorithms

[1] Johnson, A., Madden, K., & Sahin, A. (2013).
Discovering Discrete Dynamical Systems. MAA
Press.
[2] Mandelbrot, B.B. (2002). Chapter 3 Fractals ,
Graphics , and Mathematics Education 1.
[3] Churchill, M. (2004). Introduction to Fractal
Geometry.

Future Goals
❏ Our algorithms can surely be optimized further,

allowing not only for faster rendering, but also for
the visualization of more complex fractals.

❏ A greater, more interactive web interface for
visualizing all our findings (and more fractals) in
one place would aid us in our objective.

❏ 2D Julia Set visualizer using the iterative pixel coloring
approach as mentioned above

❏ Used vanilla javascript for the computations, and React
for the canvas visualizations

❏ UI allows for a varying complex parameter c, and the
ability to pan and zoom in/out

❏ The initial approach to rendering 3D fractals
consisted of basic cube meshes placed and
sized recursively.

❏ This yielded poor performance overall,
alongside an expensive creation subroutine.

❏ Runs on local hardware, drawing polygons.

c = -0.522 + 0.515i
maxIterations = 500, renders in 84ms

Raymarching

Rendering the infinitely complex
figures of fractals presents many
computational hurdles, especially
for real-time display in
non-dedicated hardware.

In our research, we focus on
exploring and optimizing rendering
algorithms and techniques for
escape-time fractals, such as Julia
and Mandelbrot sets. Our aim is to
create an interactive web platform
for students to easily and
dynamically explore these
structures, enhancing their
mathematical engagement.

Fractals are often observed in our
natural world, ranging from
snowflake patterns to lightning
bolts and even galaxies. They
exhibit self-similarity and infinite
complexity.

One well-known class of fractals,
Julia Sets- the visualization of
which is our current focus- is
generated by iterating complex
functions of the form:

Typical rendering approaches
involve iterating through each
pixel on the screen as a
coordinate in the complex plane.
This proved to be computationally
expensive, especially at higher
resolutions. This prompted our
project to facilitate visualizing
these shapes and generating
greater interest in their creation.

❏ Casts a ray, iteratively “marches” a
number of steps, within some distance
of the nearest surface.

❏ More efficient for mathematical shapes
such as fractals, with an undetermined
polygon count.

❏ Runs on local hardware & web
browser.

Fractal in Unity 3D: Cube Tetrahedron

Menger Sponge Fractal with Raymarching

Sierpiński Tetrahedron Fractal with Raymarching

❏ Interactive online
viewer, with control
over different fractal
parameters and
custom viewports.

https://augusto-butkewitsch.github.io/raymarch

❏ Pixels on screen represent coordinates on the
complex plane

❏ Pixel color is determined by escape rate: how
fast that coordinate, under a function, diverges.

Example pseudocode of a Mandelbrot function

❏ Higher resolution ⇔ Degrading performance

❏ Fractals provide an unique avenue to explore
both the mathematical properties of recursion and
several complex computer graphics & rendering
techniques.

❏ There is a large variety of fractals that can be
explored, both in two and three dimensions.

❏ Visualization approaches and their optimizations
are largely case dependent.

c = -0.75 + 0i
maxIterations = 500, renders in 278ms

❏ Pixel coloring
algorithm based off of
whether or not they
escaped and how
many iterations it took
to “escape”

❏ Flaw: visualization
through this method is
finite; the computer
loses precision at very
small numbers

https://julia-set-visualizer.vercel.app/

❏ As opposed to the noisy
pixel based coloring,
using a lifting algorithm
is an alternative.

❏ Takes a backward
combinatorial approach,
and builds a structure of
pre-images.

❏ Reveals the hidden
shape of the Julia set by
tracing how points could
have changed, layer by
layer.

Professor Mummert’s image for the Lifting algorithm

Pseudocode for Lifting Algorithm Implementation

