
Visualizing the Computational Complexity of Knots and Links
Shannon Cheng and Saarah Nazar

Abstract

We are investigating the computational complexity of two decision problems - the Inde-
pendent Set Problem and the Trivial Sublink Problem. We provide a reduction from the
former to the latter. This gives a new, simpler proof that the Trivial Sublink Problem is
NP-hard. Our project consists of two main goals: a careful write-up of this new stream-
lined proof, and a visualization tool that implements the reduction, thereby giving users
intuition on why problems in link theory are computationally hard.

Background and Motivation

Figure 1: Trefoil knot Figure 2: Hopf link Figure 3: A 3-strand braid

A knot is an embedding of circle into R3. Knots can be represented with 2d knot dia-
grams as in Figure 1. A link is a generalization of a knot that allows for several indi-
vidual knots (called components) that can be linked around one another as in Figure 2.
Braids can be used to represent both knots and links in a simplified, standardized way in
terms of which strands cross over which other strands. An example can be seen in Fig-
ure 3. To convert a braid diagram to a link diagram, we “close” the braid by connecting
the top end of each strand to the bottom end of the strand directly below it.

Algorithms that solve a decision problem can be categorized by their time complexity,
how their number of computations scale with the input size.

The motivation for this project is to provide a simple-as-possible example that exhibits
the intrinsic computational complexity of knots and links. To this end, we first identified
a specific decision problem about links called the Trivial Sublink Problem, and we then
showed it is NP-hard by reducing from the Independent Set Problem (a well-known NP-
complete problem). To aid in intuition, we also built a visualizer.

Trivial Sublink Problem

A trivial sublink is a subset of k components that are completely unlinked and with each
component unknotted- that is, they can be separated in 3D space without any entangle-
ment or crossings between them. These loops are topologically equivalent to disjoint,
unknotted circles.
The Trivial Sublink Problem asks: Given a link diagram D and an integer k, does D
contain a trivial sublink with exactly k components?

Independent Set Problem

A (simple, undirected) graph G = (V,E) consists a finite set of vertices V = {1, . . . , n}
and a set of edges E ⊂ V × V with the properties that (j, i) ∈ E for all (i, j) ∈ E, and
(i, i) /∈ E for any i ∈ V . A graph can be represented by a n × n symmetric square matrix
with 0 and and 1 entries—called the adjancency matrix—where A[i][j] = 1 means that
there exists an edge between nodes i and j. An independent set of G is a subset I ⊆ V
such that no two vertices in I are connected by an edge.

The Independent Set Problem asks: Given a graph G (via its adjacency matrix) and an
integer k, does there exist an independent set of size k?

For example, consider the following graph and its adjacency matrix:

1

2

3

4 5

A =


0 1 0 0 0
1 0 1 0 1
0 1 0 0 1
0 0 0 0 1
0 1 1 1 0


Suppose k = 3. Is there an independent set of size k = 3? Let us systematically search:

1. {1, 2, 3}: not independent - 1 and 2 are adjacent, 2 and 3 are adjacent
2. {1, 2, 4}: not independent - 1 and 2 are adjacent
3. {1, 2, 5}: not independent - 1 and 2 are adjacent
4. {1, 3, 4}: INDEPENDENT! - no edges between 1, 3, and 4

This example suggests that finding independent sets may somtimes require check-
ing many combinations. In fact, the Independent Set Problem is NP-hard, implying
(if the Strong Exponential Time Hypothesis is true) that there does not exist any sub-
exponential time algorithm to solve it.

Reduction

We perform a reduction from the Independent Set Problem to the Trivial Sublink Problem
using braid words. We first encode a graph’s adjacency matrix A into a braid word wA,
then close it to form a link diagram LA. Here is the explicit construction:

wA
def
=

n∏
i=0

n−2∏
j=i

σj ·
i∏

j=n−2

σ
−cos(π∗A[i][j])
j


where

Here is an example of what the reduction looks like using our visualization tool:
https://trivial-sublink-git-main-shannonc8s-projects.vercel.app/

Key Property of the Reduction

Claim: For all k ∈ Z>0, LA has a k-component trivial sublink if and only if A has an inde-
pendent set of size k.

Proof sketch: Consider a k-component sublink L′ ⊆ LA such that for each pair of sub-
components K1, K2 ⊆ L′, lk(K1, K2) = 0, i.e. their linking number is 0. We want to show
L′ is trivial.

Each Ki corresponds to a strand i in the braid diagram bA. Consider arbitrary strands n
and m such that n < m and delete the other k − 2 strands of bA. This allows us to relabel
our strands, namely n = 1 and m = 2. Notice that:{

σ11σ
1
1 if A[n][m] = 1,

σ11σ
−1
1 if A[n][m] = 0.

When two components are not linked, their two corresponding strands can be simplified
to become trivial using Reidemeister-2 moves.

Acknowledgments

We would like to thank our graduate mentor Anna Natalie Chlopecki and Professor Sam-
perton for all their kindness, mentorship, and guidance with this project.

References

[1] Arnaud de Mesmay, Yo’av Rieck, Eric Sedgwick and Martin Tancer. The unbearable
hardness of unknotting. Advances in Mathematics, 381:107648, 2021.
[2] Dale Koenig and Anastasia Tsvietkova. NP-hard problems naturally arising in knot
theory. Transactions of the American Mathematical Society, 8(15):420-441, 2021.
[3] Marc Lackenby. Some conditionally hard problems on links and 3-manifolds. Discrete
& Computational Geometry, 58:580-595, 2017.

Purdue PXML Spring 2025 Poster Session


