

Exploring Quantum Graph Invariants

Luke Hawthorn Jordan Larson Isaiah Lee Lorenzo Lopez

Graph Invariants

A graph invariant is some function f such that for graphs Γ_1 and Γ_2

$$\Gamma_1 \cong \Gamma_2 \implies f(\Gamma_1) = f(\Gamma_2).$$

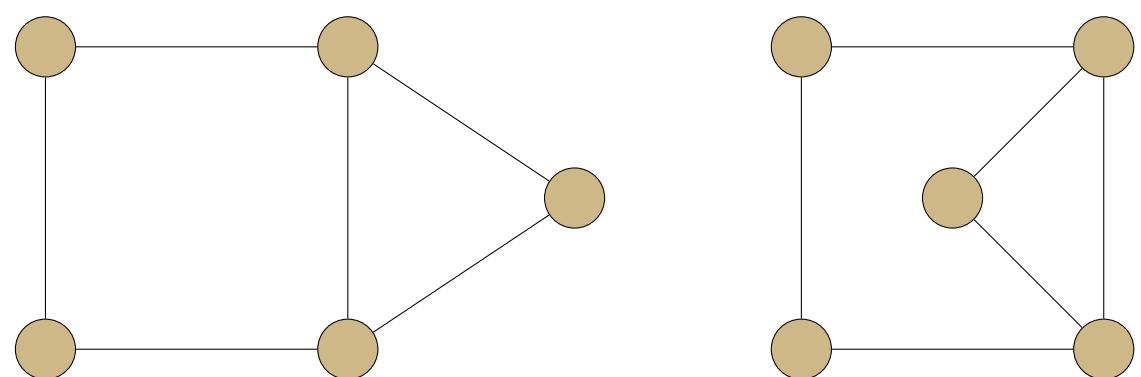


Figure 1. Pictorial representation of two isomorphic graphs

This research focuses on the *Lovász Theta* number, an invariant that bounds the NP-hard to compute chromatic and clique numbers.

$$\alpha(\overline{G}) \leq \vartheta(G) \leq \chi(\overline{G})$$

Quantum Graphs

To think about a quantum graph, it is helpful to first consider the matricial system associated to a graph:

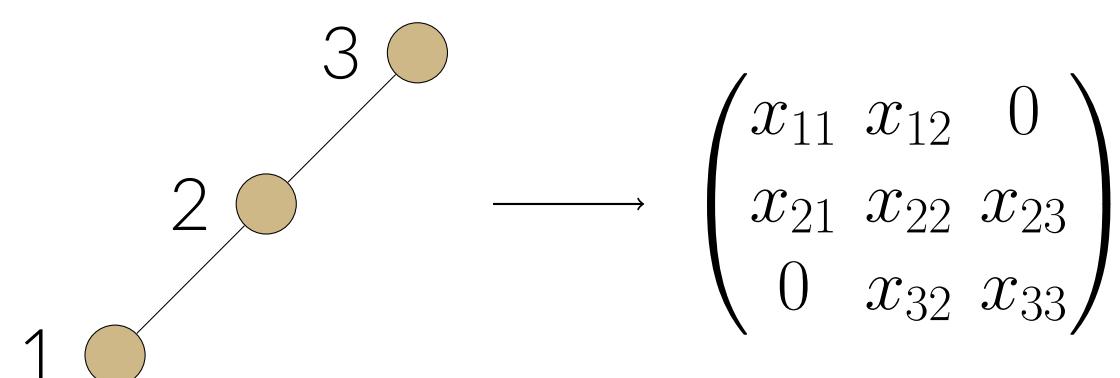


Figure 2. Example of matrix system associated to a graph

Generalizing these matricial systems, a *quantum graph* (also called a non-commutative graph) is any matricial system that is closed under taking the adjoint and contains the identity.

Quantum Graph Invariants

Consider two extensions of *Lovász Theta* for quantum graphs: the CP-index [1] and the quantum Lovász Theta [2].

$$\text{Ind}_{\text{CP}}(\mathcal{S}_1 : \mathcal{S}_2) = \inf\{\|\varphi(I)\| : \varphi(I) \in \text{CI}, \varphi(\mathcal{S}_1) \subset \mathcal{S}_2, \varphi - I \in \text{CP}(\mathcal{S}_1)\}$$

$$\tilde{\vartheta}(\mathcal{S}) = \max\{\|I + T\| : T \in \mathcal{S}^\perp, I + T \succeq 0\}$$

Research Question

For an arbitrary quantum graph \mathcal{S} , does $\text{Ind}_{\text{CP}}(M_n : \mathcal{S}) = \tilde{\vartheta}(\mathcal{S})$?

Choi Representation

Define E_{ij} to be the matrix whose i, j -th entry is 1 and whose other entries are 0. A linear map φ is fully defined by the values of $\varphi(E_{ij})$, which can be summarized in a *Choi matrix*:

$$\sum_{i,j} \varphi(E_{ij}) \otimes E_{ij}.$$

Theorem (Choi): φ is completely positive if and only if its Choi matrix is positive semidefinite.

Methods

$$\begin{array}{ll} \text{maximize} & \lambda \\ \text{subject to} & \text{tr} \otimes \text{id}(X) = (1 - \lambda)I_n \\ & X + \lambda \Delta_n \in M_n \otimes \mathcal{S} \\ & X \in (M_n \otimes M_n)^+ \end{array}$$

0.33	.	.	0.17	-0.17	-0.17	0.17	-0.17	-0.17
.	0.33	.	-0.17	0.17	-0.17	-0.17	0.17	-0.17
.	.	0.33	-0.17	-0.17	0.17	-0.17	-0.17	0.17
0.17	-0.17	-0.17	0.33	.	.	0.17	-0.17	-0.17
-0.17	0.17	-0.17	.	0.33	.	-0.17	0.17	-0.17
-0.17	-0.17	0.17	.	.	0.33	-0.17	-0.17	0.17
0.17	-0.17	-0.17	0.17	-0.17	-0.17	0.33	.	.
-0.17	0.17	-0.17	-0.17	0.17	-0.17	.	0.33	.
-0.17	-0.17	0.17	-0.17	-0.17	0.17	.	.	0.33

Figure 3. Example Choi Matrix output from the semidefinite program

$$\varphi(x) = \frac{X \bullet J}{n} I - \frac{X \bullet (J - I)}{n(n-1)} J$$

Result

Defining $\mathcal{T}_A = (\text{span}\{A\})^\perp$, the following are true:

$$\begin{aligned} \text{Ind}_{\text{CP}}(M_n : \mathcal{T}_{J-I}) &= 2, \\ \tilde{\vartheta}(\mathcal{T}_{J-I}) &= n. \end{aligned}$$

Thus the two Quantum Lovász Theta numbers do not agree in general.

Further Conjectures

$$\begin{aligned} \text{Ind}_{\text{CP}}(M_n : \mathcal{T}_A) &= 2, \\ \text{Ind}_{\text{CP}}(M_n : \mathcal{T}_A^*) &= n, \\ \text{Ind}_{\text{CP}}(\mathcal{T}_A^* : \text{CI}) &= n, \end{aligned}$$

Given two matrix systems of graphs Γ_1, Γ_2 of size $n \times n$, define the “unitary perturbation” by a unitary matrix U from the Haar distribution by $\Gamma_1 \sigma \Gamma_2 = U \mathcal{S}_{\Gamma_1} U^* + \mathcal{S}_{\Gamma_2}$. Hypothesis:

$$\text{Ind}_{\text{CP}}(M_n : \Gamma_1 \sigma \Gamma_2) \leq \min\{\text{Ind}_{\text{CP}}(M_n : \mathcal{S}_{\Gamma_1}), \text{Ind}_{\text{CP}}(M_n : \mathcal{S}_{\Gamma_2})\}.$$

One may go a step further in this direction and compute the average inequality over a number of unitary matrices from such Haar distribution as and make the following conjecture:

$$\mathbb{E}[\text{Ind}_{\text{CP}}(M_n : \Gamma_1 \sigma \Gamma_2)] = \mathbb{E}[\tilde{\vartheta}(\Gamma_1 \sigma \Gamma_2)],$$

where the the expected value is over the aforementioned set of unitary matrices.

Acknowledgments

We would like to thank Connor Thompson, Patrick DeBonis, and Professor Sinclair for their assistance and mentorship during this project.

References

- [1] R. Araiza, C. Griffin, and T. Sinclair. An index for inclusions of operator systems, 2022.
- [2] R. Duan, S. Severini, and A. Winter. Zero-error communication via quantum channels, noncommutative graphs, and a quantum lovász number. *IEEE Transactions on Information Theory*, 59(2):1164–1174, Feb. 2013.