
In recent years, advancements in the field of Artificial Intelligence have 
democratized access to AI tools and related research. An effect of this 

democratization is the use of machine learning models (mainly neural networks) 

in adjacent fields such as math and physics. This project focuses on applying 
and determining the efficacy of KANs to study the bridge numbers of 

knots.
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Introduction KANs for Regression

Conclusions & Future Work
- While both types of KAN applications produced similarly strong results 

when considering thresholding, we can tell by our overall accuracies 

that neither model was able to perform better than the models 

previously employed by earlier researchers [4]. 
- However, our work was constrained by session length and RAM 

limitations in Google Colab. For future researchers, it may be possible 
to employ larger KANs and fine-tune models to a greater degree to 

achieve stronger results
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Since we were using regression, we decided to establish a threshold, 
since our model would be predicting continuous values between 3 and 4. 

We decided that any predictions < 3.5 would be mapped to 3, and any 

≥ 3.5 would be mapped to 4. We also tested on different thresholds to 
measure changes in accuracy. Our best performing model demonstrated 

the following results.

Mathematical Background

Mathematical knots are different from colloquial knots in the sense that their 
ends are joined, thus the knot structure cannot be unraveled. These knots are 

more precisely depicted with the following definitions:

To retrieve a gauss code from a given knot diagram: 

• choose an arbitrary starting point and traverse around the knot in a 

chosen direction. 
• On encountering a crossing, label it as 𝑎1. If it is an under-crossing, let 

𝑎1 = −1. Else, let 𝑎1 = 1. 
• Repeat this process for each crossing

• terminate when you return to the starting point.

Definition 1.4:
A Reidemeister move is some knot deformation classified as Type I, II, or III, colloquially 

known as a twist, a poke, and a slide (shown below). Two equivalent are equivalent knots if 

and only if their knot diagrams be deformed into the other by a sequence of Reidemeister 
moves. [3]

Reidemeister Moves

Gauss codes are arguably the best way to describe a knot, but it is important to note 
that 

• diagrams corresponding to the same gauss code (and hence, the same knot) can 

appear very different. 
• Additionally, it is not true that every gauss code corresponds to a classical knot. For 

example, {1, -2, -1, 2} is not a classical knot.
• This motivated Kauffman [2] to define such non-realizable knots as virtual knots 

which form a correspondence to any given gauss code, up to Reidemeister 

moves.

Bridge Numbers & Past Work
One important invariant of mathematical knots is the Bridge Number, which quantifies the minimal 
number of overbridges on a knot diagram. Hence, the bridge number can be thought of as encoding the 

structural property of a knot that is not visible from a particular diagram. Our objective is to study the 

bridge numbers of knots in relation to their gauss codes.

Overbridges are parts of the knot diagram that start and end at under-crossings containing an 

overcrossing(s). Counter-intuitively, it is possible to have two diagrams corresponding to the same knot 
with different numbers over-bridges. This fact motivated the definition of the following invariant:

Currently, given a gauss code (or knot diagram), it is difficult to determine the exact bridge number. 
However, algorithms exist to establish upper and lower bounds on the bridge numbers. In a recent paper, 

researchers [4] created a dataset by randomly generating gauss codes and selecting those which had a 
matching upper and lower bound. 

Then, they applied standard machine learning techniques sourced from scikit-learn to classify 3 and 4 
bridge knots of up to 16 crossings. Their best performing model was a Random Forest Classifier with an 

accuracy of 95.70% and an F1 score of 95.54%. 

KANs & Applications

The neural scaling laws of a KAN are also far more efficient than those of an MLP, leading to small KANs 
being able to outperform large MLPs [5]. Thus, KANs seem promising for knot-invariant classification.

We tested numerous sizes of KANs and tuned hyperparameters to improve results. We measured 
accuracy, recall by bridge number, and balanced accuracy (the average of recall by bridge number) for 

each iteration of our models and tried to employ both classification and regression approaches.

Before applying any model architecture onto our data, we first had to manage a data imbalance. In our 

dataset, there were ~900,000 gauss codes corresponding to 3-bridge knots, and only ~200,000 gauss 
codes corresponding to 4-bridge knots. As such, we decided to oversample our 4-bridge data using cyclic 

permutations after splitting training and testing data. If we had the gauss code {1,-2,-1,2} and did 2 cyclic 
permutations, both {-2,-1,2,1} and {-1.2.1,-2} would get added to our training data.  

KANs for Classification
Our process for classification was generally the same as regression, with 
the only difference being the loss function. Our regression approach used 

a weighted mean-squared error loss function, while the classification 

approach employed a weighted binary cross entropy loss function. This 
allows the classification model to produce results between 0 and 1. 1 

means that the model is confident the gauss code is 4 bridge, and 

0 means the model is confident the gauss code is 3 bridge. Thus, 

thresholding in this example was done between 0 and 1. We see below 

that the best overall accuracy was 86.8%.
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Definition 1.2:

A knot is a continuous map 𝛾: 𝑎, 𝑏 →  ℝ3 such that 𝛾 𝑎 =
𝛾(𝑏) and 𝛾 is injective on 𝑎, 𝑏 .

Definition 1.3:

A Gauss code is a sequence 𝑎𝑖 𝑖=1
2𝑛 such that

 𝑎𝑖 ∈ {±1, ±2, … , ±𝑛} with each appearing only once.

Gauss Codes

Threshold Accuracy Recall 
(Bridge 3)

Recall 
(Bridge 4)

Balanced 
Accuracy

F1-score 
(Bridge 4)

3.300 0.733 0.704 0.870 0.787 0.533
3.400 0.817 0.823 0.790 0.806 0.602
3.500 0.847 0.876 0.711 0.793 0.619
3.600 0.859 0.912 0.613 0.762 0.762
3.700 0.859 0.967 0.352 0.660 0.467

Figure 4: (Top) Table of regression model evaluation by horizontal 
threshold (Bottom) Confusion matrix of model at horizontal threshold 3.500

Threshold Accuracy Recall 
(Bridge 3)

Recall 
(Bridge 4)

Balanced 
Accuracy

F1-score 
(Bridge 4)

0.300 0.846 0.880 0.684 0.782 0.608
0.400 0.862 0.918 0.599 0.758 0.603
0.500 0.868 0.943 0.516 0.729 0.578
0.600 0.868 0.963 0.421 0.692 0.528
0.700 0.859 0.982 0.283 0.632 0.413

Figure 5: (a) Table of classification model evaluation by horizontal 
threshold

Definition 1.5:
Given a gauss code, a strand is a string of consecutive integers starting and ending at a 

negative integer. A strand containing at least one positive integer is called an overbridge.

Definition 1.6:
The bridge number of a knot type K is the minimum number of overbridges over all gauss 

codes corresponding to knot type K.

Figure 3: Illustration of Reidemeister moves from [3]

Kolmogorov-Arnold Networks (KANs) [5] are efficient and interpretable alternatives to Multi-Layer 
Perceptrons (MLPs). KANs have been shown to 

• learn physical equations, solve partial differential equations, 

• outperform MLPs in regression tasks, 
• discover relations in knot invariants while unsupervised. 

Figure 1: Planar Diagram of the Trefoil Knot

Figure 2: Labeled Trefoil Knot

Definition 1.1:

A knot is an embedding of a circle into Euclidean 3-space.


