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Introduction

In recent years, advancements in the field of Artificial Intelligence have
democratized access to Al tools and related research. An effect of this
democratization is the use of machine learning models (mainly neural networks)
in adjacent fields such as math and physics. This project focuses on applying
and determining the efficacy of KANs to study the bridge numbers of
knots.

Mathematical Background

Mathematical knots are different from colloquial knots in the sense that their
ends are joined, thus the knot structure cannot be unraveled. These knots are
more precisely depicted with the following definitions:

Definition 1.1:
A knot is an embedding of a circle into Euclidean 3-space.

Definition 1.2:
A knot is a continuous map y:[a, b] = R3 such that y(a) =
y(b) and y is injective on (a, b).

Figure 1: Planar Diagram of the Trefoil Knot

Definition 1.3:
A Gauss code is a sequence (a;)", such that
a; € {£1,%2,...,£n} with each appearing only once.

Gauss Codes

To retrieve a gauss code from a given knot diagram:
* choose an arbitrary starting point and traverse around the knot in a
chosen direction.
* On encountering a crossing, label it as a,. If it is an under-crossing, let
a; = —1. Else, let a; = 1.
* Repeat this process for each crossing
« terminate when you return to the starting point.

Figure 2: Labeled Trefoil Knot

Gauss codes are arguably the best way to describe a knot, but it is important to note
that

diagrams corresponding to the same gauss code (and hence, the same knot) can
appear very different.

Additionally, it is not true that every gauss code corresponds to a classical knot. For
example, {1, -2, -1, 2} is not a classical knot.

This motivated Kauffman [2] to define such non-realizable knots as virtual knots
which form a correspondence to any given gauss code, up to Reidemeister
moves.

Reidemeister Moves

Definition 1.4:

A Reidemeister move is some knot deformation classified as Type |, Il, or lll, colloquially
known as a twist, a poke, and a slide (shown below). Two equivalent are equivalent knots if
and only if their knot diagrams be deformed into the other by a sequence of Reidemeister
moves. [3]
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Figure 3: lllustration of Reidemeister moves from [3]

Bridge Numbers & Past Work

One important invariant of mathematical knots is the Bridge Number, which quantifies the minimal
number of overbridges on a knot diagram. Hence, the bridge number can be thought of as encoding the
structural property of a knot that is not visible from a particular diagram. Our objective is to study the
bridge numbers of knots in relation to their gauss codes.

Definition 1.5:
Given a gauss code, a strand is a string of consecutive integers starting and ending at a
negative integer. A strand containing at least one positive integer is called an overbridge.

Overbridges are parts of the knot diagram that start and end at under-crossings containing an
overcrossing(s). Counter-intuitively, it is possible to have two diagrams corresponding to the same knot
with different numbers over-bridges. This fact motivated the definition of the following invariant:

Definition 1.6:
The bridge number of a knot type K is the minimum number of overbridges over all gauss
codes corresponding to knot type K.

Currently, given a gauss code (or knot diagram), it is difficult to determine the exact bridge number.
However, algorithms exist to establish upper and lower bounds on the bridge numbers. In a recent paper,
researchers [4] created a dataset by randomly generating gauss codes and selecting those which had a
matching upper and lower bound.

Then, they applied standard machine learning techniques sourced from scikit-learn to classify 3 and 4
bridge knots of up to 16 crossings. Their best performing model was a Random Forest Classifier with an
accuracy of 95.70% and an F1 score of 95.54%.

KANs & Applications

Kolmogorov-Arnold Networks (KANs) [5] are efficient and interpretable alternatives to Multi-Layer
Perceptrons (MLPs). KANs have been shown to

« |earn physical equations, solve partial differential equations,

« outperform MLPs in regression tasks,

« discover relations in knot invariants while unsupervised.

The neural scaling laws of a KAN are also far more efficient than those of an MLP, leading to small KANs
being able to outperform large MLPs [5]. Thus, KANs seem promising for knot-invariant classification.

We tested numerous sizes of KANs and tuned hyperparameters to improve results. We measured
accuracy, recall by bridge number, and balanced accuracy (the average of recall by bridge number) for
each iteration of our models and tried to employ both classification and regression approaches.

Before applying any model architecture onto our data, we first had to manage a data imbalance. In our
dataset, there were ~900,000 gauss codes corresponding to 3-bridge knots, and only ~200,000 gauss
codes corresponding to 4-bridge knots. As such, we decided to oversample our 4-bridge data using cyclic
permutations after splitting training and testing data. If we had the gauss code {1,-2,-1,2} and did 2 cyclic
permutations, both {-2,-1,2,1} and {-1.2.1,-2} would get added to our training data.

Learning Bridge Number of Knots: An Experiment with Kolmogorov-Arnold Networks (KANs)

KANSs for Regression

Since we were using regression, we decided to establish a threshold,
since our model would be predicting continuous values between 3 and 4.
We decided that any predictions < 3.5 would be mapped to 3, and any
> 3.5 would be mapped to 4. We also tested on different thresholds to
measure changes in accuracy. Our best performing model demonstrated
the following results.

Threshold |Accuracy Recall Recall Balanced |F1-score
(Bridge 3) |(Bridge4) |Accuracy |(Bridge 4)

3.300 0.733 0.704 0.870 0.787 0.533
3.400 0.817 0.823 0.790 0.806 0.602
3.500 0.847 0.876 0.711 0.793 0.619
3.600 0.859 0.912 0.613 0.762 0.762
3.700 0.859 0.967 0.352 0.660 0.467
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Figure 4: (Top) Table of regression model evaluation by horizontal
threshold (Bottom) Confusion matrix of model at horizontal threshold 3.500

KANSs for Classification

Our process for classification was generally the same as regression, with
the only difference being the loss function. Our regression approach used
a weighted mean-squared error loss function, while the classification
approach employed a weighted binary cross entropy loss function. This
allows the classification model to produce results between 0 and 1. 1
means that the model is confident the gauss code is 4 bridge, and
0 means the model is confident the gauss code is 3 bridge. Thus,
thresholding in this example was done between 0 and 1. We see below
that the best overall accuracy was 86.8%.

Threshold |Accuracy Recall Recall Balanced |F1-score
(Bridge 3) (Bridge 4) |Accuracy |(Bridge 4)

0.300 0.846 0.880 0.684 0.782 0.608
0.400 0.862 0.918 0.599 0.758 0.603
0.500 0.868 0.943 0.516 0.729 0.578
0.600 0.868 0.963 0.421 0.692 0.528
0.700 0.859 0.982 0.283 0.632 0.413

Figure 5: (a) Table of classification model evaluation by horizontal

threshold .
Conclusions & Future Work

- While both types of KAN applications produced similarly strong results
when considering thresholding, we can tell by our overall accuracies
that neither model was able to perform better than the models
previously employed by earlier researchers [4].

- However, our work was constrained by session length and RAM
limitations in Google Colab. For future researchers, it may be possible
to employ larger KANs and fine-tune models to a greater degree to
achieve stronger results
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