

Project-based research

Project Name:	The weak KAM perspective for the large deviation	Project ID:	<mark>Leave Blank</mark>
	rate function		
Supervisor:	Yuan Gao	Number of Positions	2
Project	The classical Kolmogorov-Arnold -Moser (KAM) theorem studied the existence of		
Description:	quasi-periodic solution of a perturbed integral system via find a canonical map		
	converting original phase to action-angle variables. The weak KAM theory also		
	use the solution of the stationary Hamilton-Jacobi equation, in a variational		
	representation, to study the important properties of a dynamic system including the		
	least action curves and the Aubry/Mather set. From the weak KAM perspective,		
	the good rate function in the large deviation principle for a family of invariant		
	measures not only provides a globally defined weak KAM solution but also helps		
	to characterizes the action-minimizing measure (Mather measure) and the		
	corresponding least action curve at each states. This project will use a one-		
	dimensional irreversible chemical reaction process to explicit compute and		
	illustrate the above deep connection, as well as the associated essential concepts in		
	the weak KAM theory.		
Final	Project report (in terms of presentation, or project statement, or illustrative simulations)		
Deliverables:			
Weekly Working	4 hours		
Hours			
For	Both		
Credits/Voluntary			
Desired	Required: Knowledge of ordinary differential equations and basic probability		
Qualifications			
	Preferred: familiar to computational software, for instance Matlab, Python or		
	others.		