BIFURCATIONS, DYNKIN DIAGRAMS, AND MODALITY
OF ISOLATED SINGULARITIES

A. M. Gabriélov

Introduction

Let F(x) be an analytic function in C? with an isolated singularity of multiplicity u at the origin, *
F(0) = 0. The modality of the singularity of F(x) (compare [2]) is the maximum dimension of the set of or-
bits of the group G of germs of biholomorphic transformations (C2, 0)— (C®, 0) in a neighborhood of the or-
bit of the function F(x). (We have in mind the orbits of the natural action of the group G on the space of
germs of analytic functions which reduce to zero in the first derivatives at the origin.)

In the present paper, we prove that the modality of the singularity of ¥ (x) coincides with its proper
modality, i.e., with the dimension of the set of those values of the parameter ) of a versal deformation of
this singularity for which the corresponding functions F,(x) have a singular point of the same multiplicity
as F(x) and are equal to zero at the origin.

In § 1, we establish the connection between the bifurcation diagram ¥ of a versal deformation of the
singularity of F(x) and the transversal T to the orbit of the group G which passes through F(x). Namely,
the natural mapping 7: T—3 proves to be proper and bimeromorphic. From this follow, in particular,
the irreducibility of the bifurcation diagram and the indecomposability of the covering =—CH™L, In § 2, we
deduce from this the connectedness of the Dynkin diagram of the singularity of F(x). As a corollary of the
connectedness of the Dynkin diagram, we prove that an isolated singular point cannot be distributed under
a deformation over several singular points all of the critical values at which coincide. T

In § 3, we deduce from the results of the preceding paragraphs the semicontinuity of the proper mo-
dality. and, finally, the coincidence of modality and proper modality.

The author is deeply grateful to V. I. Arnol'd for numerous helpful discussions. Theorems 5 and 6
of the present paper were originally formulated by Arnol'd as hypotheses. The author is also grateful to
A. G. Kushnirenko and V. P. Palamodov for helpful discussions.

§ 1. The Bifurcation Diagramti

Let F(x) be an analytic function in C? with an isolated singular point x° of multiplicity u, F(x% = o’
Let r’ be an admissible radius for the singularity (F(x), x; i.e., let for all r, 0 < r =1?, the set F(x)= u°
transversally intersect the sphere S,. = {|x— x°| =r}. In the sequel, in all statements containing x, it is
assumed that |x—x’| = r’, and all deformations are assumed to be so small that the condition of trans-
versality of the intersection with the sphere Sro is not violated.

Let Falz) (A= (Ay, ..., Muy), Folz) = F(z)) be a minimal versal deformation of the singularity
(F@&), x%, = < C} be the bifurcation diagram of this deformation, i.e., the set of those values A for which
F)(x) has critical value equal to u’. We may assume that Fj(x) = F(o,\)&X)~Ag, where A" = (g5 «o s Ayq)s

*Here and below, multiplicity means the Milnor number of the singularity, i.e., the multiplicity of the
gradient mapping. ‘

T Another proof of this assertion, based on a theorem of A'Campo [5], was obtained independently by Lé
Ding Trang [4].

1 The notation introduced at the beginning of the paragraph is used in the sequel without reference.
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and F(,2) ") = u’. Below, in place of F(y 1), we will write simply Fj'. Letp :céﬁ——c‘;’ be a projection.

Then py. :Z*C‘i; is a y-sheeted ramified covering. Let A C Clti be the discriminant set of this covering.
The set A corresponds to the non-Morse functions in the deformation F)' and has fwo components, one of
which (the "caustic") corresponds to functions having a degenerate singular point and the other, to func-
tions with two nondegenerate singular points with the same critical values.

Let Z be the space of germs at x° of analytie functions which have at this point a singularity with
critical value u®. The group G of germs of biholomorphic transformations (C?, x%— (C", x° acts on Z in
a natural way. Let r(q{2) (@ = (ay ..., au,), Fy(z) = F (z))be the transversal in Z to that orbit of the
group G which passes through F{x). We consider f‘a(x) as a deformation of the function F{x), and let 7:
C%z »C‘i be the mapping under which the deformation F o 18 induced from the versal deformation F;.

1
Clearly, 'r(C‘g } 9

THEOREM 1. The mapping T :C"gl-2 is proper and bimeromorphic.

Proof. We may assume that x’ = u® = 0 and 5%F(0) = 0. Then as a minimal versal deformation of the
singularity of F(x), we can take ‘

T P—i
Fr(@y=F(z) — ho— 2 hits -+ 2 b (2),

tas] © j=nsy

where (qoj(x)) is a basis of the space m¥/(9F/9x;). As the transversal to the orbit of the group G we can
take

p—1 Cpet n

. g1
Fo(z)= F{z+a)— 2 (Lj(p,-(z%—a}—-(F(a)—i,-.Z ajcpj(a)) —-Z x‘-( g: (a) + Z a;

d=n+l Jemmiay t=1 j=n+l

@),

where a = {oy, +++, ap). [We recall that the family ¥, is a versal deformation if its tangent vectors form
a basis of the space C{x}/(3F/ox;), and the family F of functions having a singularity at the origin with
critical value zero is transversal to the orbit of G if its tangent vectors form a basis of the space m¥m (3F/
w{!‘)o]

For such a choice of the families F and F o, the mapping 7 can be defined as follows:

p1 n #1

aF a9; :
}VﬂgF(ah'“sﬂu)"“ Z “i‘Pj(ﬂh---v“u) “zai(—a;:'(alv'-‘v“n)+ 2 aja_z:‘(aly-"’an));
i)

J=n e . Jeamikl

p—1

aF o,

Li=6zi @)+ 2 a; az, (@,...,a) for i=1,...,m
Jmmil t

M=o for j=n+1,...,p~1.

Indeed, the identity F,(z) = Fim(z + @) 1is obvious. From these formulas, it is seen that A = 7(a) if and
only if Aj= a for j=n+1, ..., p—1 and the function F)(x) has a singularity at the point (a;, «.., ap) with
critical value zero.

Since for A = 0 the function Fy(x) = F(x) has an isolated singular point, it follows that the mapping 7
is proper. Since for sufficiently general values A' the function Fj» has no more than one singular point
with a given critical value, the fransformation 7 is bimeromorphic.

The theorem is proved.

COROLLARY 1. The set ¥ is irreducible, and its normalization is nonsingular.

COROLLARY 2. The monodromy group of the covering py. is the symmetric group S{u).

Proof. Let L. C"{;i be a complex line in general position. By a theorem of Zariskli (see [3]), the
mapping x; ((C*-1\ A) § LY— =, (C#-1\ A) is an epimorphism, and the group 71{C¥ 1\ A) is generated by
the circuits in L around the points of the set A L. From considerations of codimension, the poinis A’ €
A NL eorrespond to functions F,r which have, besides Morse singularities, at most one singular point of
type A,. The circuits around these points induce, in the monodromy group of the covering psy, either the
identity transformation or an elementary permutation {two points are transposed while the rest remain
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fixed). By Corollary 1, the monodromy group of py. is transitive. The assertion now follows from the fact
that a transitive subgroup of S(u) which is generated by elementary permutations coincides with S(u).-

COROLLARY 3. The covering p2 is indecomposable (i.e., has no nontrivial factor-coverings).

For the proof, see [1], § 2, Lemma 2.
§ 2. Connectedness of the Dynkin Diagram

Let A'¢ A and let uym=1,..., @) be the critieal values of the function Fj:. We choose in the plane
C, 2 point u* which is not a critical value of Fyr and construct a system of paths 7, (s) [s€ [0, 1], T {0) =
u* T (1) =upy] which intersect the point u* only for s = 0 and do not pass through critical values of Fy»
for s<1. Asis well known, one can construct from such a system of paths a basis of the vanishing cycles
in Hn_i(V, Z), where V = {z: |z |<<r®, Fu»(2)= u*), [Here, H {V, Z) is the reduced compact homology
of the set V, i.e., the kernel of the mapping H, (V, Z)—H, (point, Z).] ¥ n is odd, then from the intersection
matrix of the basis obtained, one can construct a graph whose vertices are the elements of the basis, where
two vertices are connected by k solid edges if the intersection index of the corresponding cycles equals
(-1 @1/ and by k dotted edges, if the intersection 1ndex is (-1)(®12k, 1n the case of even n, one should
carry out the same construction for the function F(x) + z2. The resulting graph is called the Dynkin dia-
gram of the singularity of F(x)s» We note that the Dynkin diagram is not uniquely defined: it depends on
the choice of the system of paths np, (8) (and on the orientation of the cycles).

THEOREM 2. The Dynkin diagram of the singularity of F(x) is connected.*

Proof. We will show that the decomposition of the Dynkin diagram info connected components does
not depend on the system of paths. Indeed, let A'¢ A, Uy {m =1, ..., i) be the critical values of the func-
tion Fy', mm(s) and 7y, (s) be two systems of paths, mpy, (1) = 7y, (1) = upy,, (em) and (em) be the corresponding
bases of the vanishing cycles, and D and D' be the corresponding Dynkin diagrams. Since the path w {8)
differs from the path 7, (s) by the composition of simple loops corresponding to paths r.(s),1 the cycie em
is obta1 from the ecycle ey by means of a2 succession of Picard—Lefschetz transformations T;:e + e+
12 e, e jlej- Therefore, the cycle ep, can differ from the eycle ey, only by a combination of cycles
ej lying in the same connected component of D as ey,. Consequently, if em, and em, are in different con-
necfed components of D, then em ‘ and ep,, will be in different connected components of D'. Since in this
argument the systems of paths rp, (s) and =}, (s) can exchange places, the decompositions into connected
components of the diagrams D and D' coincide, as was claimed.

Thus, the decomposition of the Dynkin diagram into connected components determines a partition, in-
dependent of the system of paths, of the set of critical values of Fy'(x), i.e., of the fibre of the covering p»
over the point A'. Since under variation of A' and a continuous deformation of the system of paths m, (8).
the Dynkin diagram does not change, this partition is defined in every fibre, depends continuously on A',
and, consequently, determines a factor-covering of py. By Corollary 3, this factor-covering is trivial.
Therefore, for the proof of the connectedness of the Dynkin diagram, it is sufficient to prove that it does
not coincide with py, i.e., that the Dynkin diagram cannot be decomposed into connected components con-
sisting of individual points. This, in turn, follows from the fact that every singularity of multiplicity
greater than one is abutted by a singularity of type A, whose Dynkin diagram is connected. The theorem
is proved. :

Remark. Using the same arguments, one can prove the connectedness of the Dynkin diagram reduced
modulo any p.

THEOREM 3. Let Fi(x) {t €[0, tg], Folx) = F(x)) be a deformation of the function F(x} for which its
singular point x° decomposes into distinct singular points x'(t), ..., @) &=2). Then Fyxi(t)) = Ft(xjit))
for some i, §.1 .

Proof. Let us assume that the assertion is false, i.e., that all critical values Ft(xi(t)) of the function
Fg coincide. It is easily shown that, then, the Dynkin diagram of the singularity of F(x) is not connected

*Remark in Proof. As has become known to the author, the proof of this theorem was also obtained by

Lazzeri (see [6]).

TWe recall that a simple loop corresponding to the path 7(8) (8€[0, 1)) in C is a closed path which is ob-

tained by approaching the point 7 (1) from =(0) along the path 7(s), going around 1r(1). and returning to 7(0)
via r(s)™,

¥ Another proof of this assertion, based on a theorem of A'Campo, was obtained independently by Lé Diing

Trang (see [5]).
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(cycles corresponding to distinct singular points of Fy do not intersect and, consequently, lie in different
connected components of the Dynkin diagram), which contradicts Theorem 2.

§ 3. Modality and Proper Modality

Definition 1. The modality of the singularity (F(x), x°)Ais the largest number m such that in any neigh-
borhood of the point F(x) there exists in the family F(x) an m-dimensional analytic subset whose inter-
section with every orbit of the group G is either empty or discrete.

Definition 2. The proper modality M(F(x), x% of the singularity (F(x), %) is the dlmensmn at the
origin of the set of values A' for which ¥, has a singular point of multiplicity p.

THEOREM 4. Let X be the set of those A'€ CH™! over which the covering py has at most k sheets. If
the dimension at the origin of the set X equals d, then the proper modality of the singularity (F(x), x% is at
least d—k+ 1.

Proof. It is not difficult to show that there exist analytlc functions S A" (=2, ..., u) such that the
set of those A' over which the covering py has at most u' sheets is defmed by the cond1t1ons Su (M) = ..
=Sy (A} =0. HEA'€X, then S. (M) = = 844 (M) = 0. Therefore, the set Y of those \'€ X over whlch
Py has just one sheet is distinguished by the conditions S (A') = ... = 8,(1") = 0, and consequently, dim Y =
d—k+ 1. It follows from Theorem 3 that for A'€ Y, the function F,r(x) has a singular point of multiplicity
. Consequently, the proper modality of the singularity (F(x), x% is at least d—k+ 1, as we were required
to prove.

THEOREM 5. Proper modality is upper semicontinuous.

Proof. Let us assume that the assertmn of the theorem is false. Since the deformation F, is versal,
there exist s sequences A;—0 and x; ~—~x? such that M (Fy; (z), z;) > M (F (z), z°). We may assume that for
every i the function FM has a smgulanty at the point x; of multiplicity v and proper modality N > M(F, x 9,
where v and N do not depend on i. Let X be the set of those A'€ C¥™! over which the covering py has at
most uy—v+ 1 sheets. We will show that dim X=N+u—v,

We consider the deformation F, in a neighborhood of the point A; as a deformation of the singularity
(F;‘ (x), xj). I is easily shown that, for sufficiently small A, this deformation is versal. Consequently, the
correspondmg mapping 6; : C’i*C where CY is the parameter space of a minimal versal deformation of
the singularity (F); (x), x3), is a submersion. Since the proper modality of the singularity (Fy (), x;) equals
N, there exists an (N+ 1)-dimensional set Y in the space C¥ whose points correspond to the functmns which
have a singular point of multiplicity v. The set §; ~1(y) CC“ has dimension N+ y—v+ 1, and if A€ 9"1(Y).
then F, has a singular point of multiplicity v, wh1ch means that the number of distinet critical values of the
function F,is at most y —v + 1. Consequently, p(6; 1(y)) ¢ X, and since Aj can be chosen as near as desired
to zero, the dimension of the set X at the origin is at least N+ p—v, as clalmed. It follows from Theorem 3
applied to X that the proper modality of the singularity (F(x), x") is at least N, which contradicts the as-
sumption N> M(F(x), x)). The theorem is proved.

THEOREM 6. The modality of the singularity (F(x), x% coincides with its proper modality.

Proof. We may assume that x’= 0, u’ = 0. Let X be the set of those values A' for which F)'(x) has
singular point of multiplicity y. We consider the set Y = (o> 7)"1(X) in the space C ot parameters of the
transversal to the orbit of the group G. It follows from Theorem 1 that dim Y = d1m X.

Let '€ Y. I o'is sufficiently small, then the set F () is transversal to the orbit of the group G
which passes through Fa,o(x) Since Fao(x) has singular point of multlpllclty i, the codimension of the orbit
of this function equals u—1. Therefore, the orbit passing through Fao(x) intersects the set F (), a€Y, dis-
cretely. Consequently, the modality of the singularity of F(x) is at least its proper modality.

We will now prove the reverse inequality. It is enough o show that there exists, as near as desired
to the function F(x), a function whose proper modality is not less than the modality of F(x) and to use the
semicontinuity of the proper modality.

Let Y C“_ 1 be a set whose mtersectmn with every orbit of G is either empty or discrete, while the
dimension of Y equals the modality of F(x) We may assume that all functions F (x); a€Y,have a singular
point at the origin of multiplicity v. Let o’€Y. It follows from the definition of Y that the mapping of Y to
- the transversal T to the orbit of G which passes through F o{x) is proper. Therefore, the dimension of the
image of Y in T equals the dimension of Y. From the theorem on the properness of the mapping 7, applied
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to F o(x), and from the fact that all functions F x), €Y, havea singular point of multiplicity v, it follows
that the proper modality of the function F w0(x) is not less than Y, which is what was required for the proof
of the theorem.

1.
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