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Abstract

Cluster dynamics is the property of dynamics of systems of sta-
tistical mechanics when for given time the whole array of particles is
decomposed onto finite clusters which move independently during a
random interval of time. In this paper we study statistical properties
and critical indices related to cluster dynamics.
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1 Introduction

L. Boltzmann was the first who tried to explain the laws of thermodynamics

and kinetics as corollaries of dynamics of large systems of interacting par-

ticles (see his classical book [Bol]). In particular, Boltzmann derived the
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classical Boltzmann kinetic equation based on his Stoßanzahlsatz which gave

the first “dynamical” explanation of irreversibility. The Stoßanzahlsatz can

be applied to any system of statistical mechanics which can be considered as

a small perturbation of an ideal gas and undergoes the so-called Boltzmann-

Grad limit transition (see [L1]) when the length of the free path is of the

order of the size of the whole system. O. Lanford (see [L1]) gave the first

mathematical proof of the local existence theorem of the solutions of the

Boltzmann equation where he showed the convergence of correlation func-

tions to solution of the Boltzmann equation.

There were many attempts to extend the conditions under which the

Boltzmann kinetic equation or its generalization works. In this connection

we would like to mention the book by Bogolyubov [B1] where Bogolyubov

stressed several times the idea that in the gaseous phase when the interac-

tion between the particles is short-ranged the system can be decomposed

onto finite clusters so that during some random interval of time each cluster

moves independently on other clusters as a finite-dimensional dynamical sys-

tem. After such random time the system can be decomposed again on other

dynamically independent clusters and so on. It is natural to call this type of

dynamics as cluster dynamics.

The cluster dynamics was shown to exist in the one-dimensional sys-

tems of statistical mechanics in [S1]. Consider the infinite system of one-

dimensional particles with pair-wise interaction having a hard core and short

range. Assume that the distribution of particles is given by the Gibbs canon-

ical distribution. In the one-dimensional case in the thermodynamical limit

there is no difference between canonical and grand canonical distributions.

According to these distributions in a typical situation on any interval [−R, R]

there are empty intervals of the length O(lnR) having at t = 0 no particles.

On the other hand, the velocities of the particles have Gaussian distributions.

Therefore for any T the velocities of the particles on [−R, R] grow typically

as O(
√

ln R). It shows that for sufficiently large R particles cannot go from
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one end-point of an empty interval to the other one. In other words for any

T in the finite-dimensional dynamics particles in the domains bounded by

empty intervals do not interact with external particles.

This gives cluster dynamics. The accurate proof requires some proba-

bilistic estimates which show that the velocities do not become large during

the finite-dimensional dynamics (see [S1]). All these ideas were generalized

to the multi-dimensional case and low density, i.e. to the gaseous phase in

[S2].

The infinite system of equations of motion of particles (xi, vi) of mass

m = 1 has the form

dxi

dt
= vi,

dvi

dt
= −

∑
j

∂U(|qi(t)− qj(t)|)
∂qi

(1)

In the paper by E. Presutti, M. Pulvirenti and B. Tirozzi [PPT] the authors

proved the general existence theorem for solutions of (1) for any limit Gibbs

distribution with arbitrary density and inverse temperature. Their method

is based upon the reduction of (1) to the corresponding integral equation and

the proof of existence of solutions of the integral equation.

The most general results were obtained by R. Dobrushin and J. Fritz (see

[DF1]). They described a large subset in the phase space of (1) for which

they proved 1) the existence theorem of solutions of (1) and 2) the fact that

the probability of this subset with respect to any natural Gibbs distribution

is 1. This gives the possibility to describe the dynamics in the space of Gibbs

distributions.

Recently, it turned out that the concept of cluster dynamics has a wider

domain of applications in such fields as plasma physics, geophysics and oth-

ers (see [KS1, KS2, MDR+, RKB]). In this connection it is interesting to

study the distributions of various characteristics of cluster dynamics, such

as the distribution of the size of the clusters, the statistics of particles in a

cluster and others. The whole set of problems resembles problems of per-

colation theory but seems to be more difficult than the percolation theory
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because it involves dynamical characteristics. There is no hope that some-

thing can be done analytically. On the other hand, the use of computers

opens wide possibilities in getting numerical results. The corresponding ex-

periments were performed recently and the results are presented below in

this paper. We want to stress the appearance of new critical indices which

are special for cluster dynamics and presumably are different from similar

ones in percolation theory.

In this paper we analyze numerically cluster dynamics in a simplest sys-

tem – a frictionless elastic billiard. The model and cluster rules are described

in Sect. 2. We report a phase transition in the cluster formation process in

Sect. 3 and describe how it depends on the model parameters in Sect. 4.

Also, we study how the size of the maximal cluster in a finite system scales

with the system size (Sect. 5). Section 6 describes possible applications of

cluster dynamics. Details of our numerical simulations are given in Sect. 7.

2 Model

The results in this paper refer to an elastic frictionless billiard on a square

table. Namely, we consider N balls of mass m = 1 and radius R placed

within the region T = {(x, y) : |x| ≤ L/2, |y| ≤ L/2}. We will call N the

size of the billiard. Each ball moves without friction with constant velocity

vi = (vi
x, v

i
y), i = 1, . . . , N until it collides with a wall or another ball. All

collisions are elastic, which means that the total energy E =
∑N

i=1 m |vi|2/2,

|vi|2 = (vi
x)

2 + (vi
y)

2, of the system remains constant, the total momentum

p =
∑N

i=1 mvi is not affected by ball collisions, and in wall collisions the

ball’s reflection and incidence angles are the same. A useful characteristic of

the billiard is the density of balls:

ρ =
N π R2

L2
. (2)

We will need the notion of ∆-cluster [S1], which is a group of balls that

have affected each others’ dynamics during the time interval of duration ∆.
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Formally, we call two balls ∆-neighbors at epoch t if they collided during the

time interval [t−∆, t]. Any connected component of this neighbour relation

is called a ∆-cluster at epoch t. This definition ensures that each ball has

collided with at least one ball from its ∆-cluster within the time interval

[t−∆, t]. The mass of a cluster is the total mass of its balls. We denote by

N∆(t) the total number of ∆-clusters at instant t, and by M i
∆(t) the mass of

the i-th largest cluster. Thus, the mass of the maximal ∆-cluster is M1
∆(t),

of the second largest cluster M2
∆(t), of the smallest cluster MN∆

∆ (t), etc.

Obviously, at ∆ = 0 there exist N clusters of mass m, each corresponding

to an individual ball. As ∆ increases, the balls start to collide so the number

of clusters becomes smaller while their masses increase. In this note we only

consider a situation when ∆ = t, that is we deal with all the clusters that

have been formed during the time interval [0, ∆]. This allows us to drop the

dependence on t and work with the number of clusters N∆, maximal cluster

of mass M1
∆, etc.

In this paper we focus on the time-dependent distribution (density) ft(M)

of cluster sizes (masses). In a numerical study, to obtain a sample of n clus-

ters at epoch t one runs the model n times, each time choosing a single cluster

at epoch t. A standard practice in stochastic geometry suggests to choose the

cluster nearest to the origin (that is the cluster that contains the ball near-

est to the origin). It happens that the computational load associated with

this procedure is prohibitive for our purposes. To make the computations

workable, we approximate the cluster size distribution ft(M) using the entire

cluster population from a single realization of the model, which has density

gt(M). For large N , ft(M) becomes an area-biased version of gt(M), since

large clusters have a better chance to lie closer to the origin than smaller

ones; and the two distributions are connected via [SKM]:

ft(M) =
M gt(M)∫

M gt(M) dM
. (3)

The results in this paper refer to gt(M).
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3 Phase transition in dynamical clustering

To study the dynamics of clusters we have considered models with 10−6 ≤

ρ ≤ 10−1, and 10 ≤ N ≤ 104. We run each model until the instant when a

cluster of mass 0.95×N is formed.

Figure 1 shows fractional masses µi
∆ = M i

∆/N of clusters as a function of

time when they have been formed; this figure refers to ρ = 10−3, N = 104.

Here we see the following generic qualitative picture that has been observed

for all the models considered. At ∆ = 0, we start with N clusters of mass m.

As the model evolves, clusters of increasingly larger masses are formed and

the total number of clusters decreases. For some period of time, 0 ≤ t ≤ tc

(for this model, tc ≈ 510) the cluster mass distribution has no notable gaps,

in particular the size of the largest cluster does not exceed significantly the

size of the second largest cluster. At t = tc one observes a sharp qualitative

change in the cluster formation process. There appears a distinctive largest

cluster, which creates a gap in the mass distribution between the largest

cluster and the rest of the clusters. Notably, this change happens when the

largest cluster is still relatively small: less than 10% of the total system mass.

It will be convenient to define formally the time instant tc that corre-

sponds to the change in cluster formation. We define here tc as the instant

after which there are no clusters larger than M1
tc :

tc = inf{t : M1
t > M i

s, s > t, i > 1}. (4)

We will refer to tc as critical time. Note that this definition uses the infor-

mation from the times t > tc (i.e., tc is not a stopping time), so it cannot be

used for operational detection of tc. It would be useful to have an alternative

definition which will use only the information available prior tc.

Figure 2 shows the empirical cluster mass density for the model with

ρ = 10−3 and N = 104 at three time instants depicted by vertical lines in

Fig. 1. For t ≤ tc the cluster mass distribution gt(M) is well described by a
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power law with an exponential taper:

gt(M) = M−β exp

(
− M

γ(t)

)
. (5)

Here β ≈ 5/2, and the taper strength is determined by γ(t): γ(t) � M leads

to almost an exponential distribution, while γ(t) � M to a pure power law.

Our simulations suggest that γ(t) is monotone increasing with γ(tc) = ∞, so

that gt(M) transforms from exponential at small times t � tc to a pure power

law at the critical epoch tc. One can readily see the scenario that character-

izes systems with phase transition of second kind. In statistical mechanics,

equation (5) describes the correlation function Γ(r) of a system (e.g., Potts

model) near the critical point. A similar power law with exponential taper

was sugegsted for the mass distribution of clusters in a percolation model

[SA, MNS+] as the percolation instant approaches; for rupture sizes in a

colliding cascades model of earthquakes [GKZ+1, GKZ+2, ZKG]; for real

ruptures in steel samples [RKB], etc. For t > tc the distribution is decom-

posed into two components: A δ-function at the mass of the largest cluster,

and the tapered power law (5) for the rest of the clusters with γ(t) monotone

decreasing for t > tc.

This picture is observed for all the models considered independently of

the billiard density ρ and size N . In particular, the critical index β ≈ 5/2 is

universal: Figure 3 show the cluster mass distribution at tc for seven different

models with N = 5× 103 and ρ = 10−1, 10−2, ..., 10−7.

4 Scaling of critical time and mass

Here we study how the critical instant tc and the fractional mass µc :=

M1
tc/N of the largest cluster at tc depend on the billiard density ρ. For

that we run multiple (from 10 to 1000) realizations of the billiard for ρ =

10−1, 10−2, ..., 10−7 and N = 5 × 103. The averaged values of tc and µc are

shown in Figs. 4, 5 as functions of ρ. These results support the following
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asymptotic relations, which give very good approximation for ρ < 10−2:

tc(ρ |N = 5× 103) ≈ 0.4 ρ−1, µc(ρ |N = 5× 103) ≈ 0.07, as ρ → 0. (6)

A more detailed analysis (not shown) indicates that the large density correc-

tion for critical time is given by:

tc(ρ |N = 5× 103) = 0.4 ρ−1
(
1 + ρ0.4 + o(ρ0.4)

)
, ρ → 0. (7)

5 Size of the maximal cluster

Here we consider the dynamics and scaling of the maximal cluster. Figure 6

shows the dynamics of the fractional mass µ1
∆ = M1

∆/N of the largest cluster

averaged over 10 to 1000 realizations of a billiard; it refers to ten models with

10 ≤ N ≤ 104 and fixed ρ = 10−3. By construction, we have the following

limiting relations:

M1
0 = 1, M1

∞ = N. (8)

Next we study in detail the scaling of M1
∆ as a function of N and ∆. Figure 7

shows M1
∆ as a function of N at eight time instants between ∆ = 0 and

∆ = 1400 ≈ 3 × tc. One can see a gradual transition between the limiting

scalings (8). Approximately linear form of the plots suggests that we have a

power law dependence

M1
∆ = c(∆) Nα(∆), (9)

with c(0) = c(∞) = 1, α(0) = 0, and α(∞) = 1. Maximum likelihood

estimations of c(∆) and α(∆) for 0 ≤ ∆ ≤ 1400 are shown in Fig. 8. At

critical time we have α(tc) ≈ 2/3.

A more detailed analysis (not shown) indicates that at initial times (0 <

t < tc/3) the maximal cluster size in a finite syztem of size N is proportional

to log10 N :

M1
∆ = α′(∆) log10(N) + c′(∆). (10)

There exists a natural connection between this transition from logarith-

mic to power scaling of the maximal cluster size and from exponential to
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power tail of the cluster size distribution (see Eq. (5) and Fig. 2). Indeed,

suppose that cluster sizes are independent and identically distributed with

distribution function F (x) and density f(x). Then the size of the max-

imal among N clusters has distribution Fmax(M) = F N(M) and density

fmax(M) = N f F N−1; and the most probable size M∗ of the maximal cluster

is given by the finite solution of d
dM

fmax(M
∗) = 0. It is readily verified that

F (M) = 1− e−λ M ⇒ M∗ =
ln(N)

λ
∝ ln(N), (11)

F (M) = 1−M−b ⇒ M∗ =

(
N b + 1

b + 1

)1/b

∝ N1/b + o(N1/b). (12)

The exponential tail of the cluster size distribution at t < tc thus justifies

the logarithmic dependence (10) of the maximal cluster size on N ; while the

power-law cluster size distribution around tc explains the power-law scaling

(9). Equations (9) and (12) suggest b = 1/α. We notice that the index

b = β − 1 ≈ 3/2 of the cluster size distribution observed at tc (see Fig. 3) is

indeed equal to 1/α ≈ 1/0.66 ≈ 3/2 observed at tc ≈ 510 in the top panel of

Fig. 8.

6 Possible applications of cluster dynamics

We have demonstrated in Sect. 3 (Figs. 1,2) above that the distribution of

the cluster size in the frictionless elastic billiard changes as the phase transi-

tion approaches. A similar phenomenon has been observed in seismicity and

economics, where it is related to the approach of an appropriately defined

critical event. Below we briefly discuss cluster dynamics in seismicity. More

detailed discussion and further examples, suggesting universality of that phe-

nomenon, are given in [KSS+, KS1, KS2].

Seismicity. An earthquake is an episode of rupture and discontinuous dis-

placement in the outer shell of solid Earth, called the lithosphere. Generally

speaking, nucleation of a single earthquake is controlled by the clash between
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stress- and strength-fields in its vicinity. Both these fields, particularly the

strength, are in turn controlled by a multitude of processes generating strong

instability. Among them are interactions with other earthquakes, mechanical

and chemical interactions of rocks and fluids, phase transitions of minerals,

heat flow, non-linear deformations and fracturing, interactions between geo-

spheres, incompatibility between the structure and kinematics, etc. These

processes evolve in multiple scales, from global to microscopic ones. Alto-

gether they turn the lithosphere into a hierarchical dissipative non-linear

(“complex”) system. Fundamental equations connecting seismicity with this

set of intertwined mechanisms are not yet known.

Scale invariance. Size of an earthquake is usually defined as its magnitude

m — a logarithmic measure of the energy E released by the earthquake

[Kan] (m = 2/3 log10 E + C). About 106 earthquakes with m > 2 are

recorded annually worldwide, and once in a few years the largest earthquakes

with m > 8 occur. The magnitude distribution of earthquakes is known in

seismology as the Gutenberg-Richter law [GR1, GR2]:

log10 (N(m)) = a− bm. (13)

Here N(m) is the average annual number of earthquakes with magnitude m

or more, b ≈ 1. The Gutenberg-Richter law emerges only after considerable

averaging of seismicity over time and territory and gives a good description

for small to medium magnitudes. At the relatively large magnitudes, the size

distribution bends downwards. The linear relation (13) is equivalent to the

power law distribution of earthquake energy:

N(E) ∝ E−β, β ≈ 2/3. (14)

To accommodate the downward slope of the energy distribution at larger

magnitudes, it can be approximated by an exponentially tapered distribution:

N(E) ∝ E−β exp (E/E0) . (15)
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Strong earthquakes are usually defined as outliers in observed distribu-

tions — “extreme events”. Such earthquakes are associated with abrupt

overall changes of seismicity, and, qualitatively, with phase transitions.

Clustering and phase transitions. Earthquakes come in a hierarchy of

clusters formed in a broad range of time-, space-, and magnitude scales,

from microscopic to global ones. Clusters emerge, coalesce, split, migrate,

and alternate with seismic quiescence (“anti-clusters”). As a strong earth-

quake approaches, distribution of cluster sizes tends to change in favor of

larger clusters. Similarly, the magnitude distribution of individual earth-

quakes changes in favor of larger magnitudes. In particular, the distribu-

tion (15) changes similarly to the cluster size distribution (5) described in

Sect. 3. These phenomena have been found in real seismicity of numerous

regions worldwide as well as in numerical models of seismicity. They were

used in several earthquake prediction algorithms, self-adjusting to statistical

properties of seismicity in different regions [KS2]. Statistical significance of

predictions based on that kind of clusters is demonstrated in [MDR+].

Similar changes in scaling relations have been observed before American

economic recessions and some socio-economic extreme events [KS1].

7 Parameters and simulation details

We have simulated the billiard for 1 ≤ N ≤ 104 and 10−8 ≤ ρ ≤ 1/2. The

table size L was kept constant, while appropriate values of R for any given

ρ and N were calculated via (2). We put m = 1 and T = 1/kB.

Recall that the Maxwellian velocity distribution of an ideal gas in D-

dimensional space is given by

f(v) =

(
m

2 π kB T

)D/2

exp−m |v|2/(2 kB T ), (16)

where v = (v1, ..., vD), |v|2 = v2
1 + · · · + v2

D, kB is Boltzmann constant,

T temperature, and m particle mass. Accordingly, the speed s := |v| of
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particles in a 2D system is given by Chi-distribution with two degrees of

freedom:

p(s) = s

√
m

kB T
exp−m s2/(2 kB T ) . (17)

We have verified that any (non-degenerate) initial velocity distribution even-

tually transforms to the Maxwellian distribution (16). The rate of conver-

gence is rather fast; say, the isotropic uniform initial velocity distribution for

N = 500 balls transforms into the Maxwellian distribution after 2 000 ball

collisions, which is 4 collisions per ball on average.

We start all our models with the Maxwellian velocity distribution (16)

and uniform placement of the balls. Specifically, the balls are placed on the

table one-by-one. The center of the first ball is uniformly distributed within

the region

T ′ = {(x, y) : |x| < L/2− R, |y| < L/2− R} ,

which ensures that it does not intersects with the table walls. The center

of (k + 1)-th ball, k ≥ 1, is uniformly distributed within the region T ′\Bk,

where Bk is the union of already placed balls; this ensures the new ball does

not intersects with existing balls and the walls.
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Figure 1: Fractional cluster masses µi
∆ = M i

∆/N as a function of time when

they have been formed in a model with ρ = 10−3, N = 104. Each point

corresponds to a single cluster. The horizontal lines at the lower part of the

figure are formed by a multitude of clusters of mass M = 2 (lowest line),

M = 3 (second line), etc. The point (0, 10−4) refers to N = 104 balls,

each of which forms a cluster of unit mass at t = 0. Notice the dramatic

change in the cluster mass distribution at the moment tc ≈ 510 depicted by

blue vertical line. Three vertical lines correspond to the three cluster size

distributions in Fig.2.
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Figure 2: Cluster size distribution at three instants depicted by vertical lines

in Fig. 1. At t < tc (green triangles) distribution can be approximated by

a power law with exponential taper at the tail; at t ≈ tc (blue balls) it is a

pure power law; at t > tc (red squares) it is a tapered power law plus a δ

function at the largest cluster. To produce this figure we used 50 independent

realizations of the model with ρ = 10−3, N = 104.

17



10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Cluster mass,  M

E
m

pi
ric

al
 d

en
si

ty

slope −2.5 

Figure 3: Power-law cluster size distribution at critical instant tc for seven

models with fixed N = 5×103 and ρ = 10−1, 10−2, ..., 10−7. The distribution

at critical instant tc is characterized by a universal index β = 5/2.
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Figure 4: Scaling of critical time tc with the billiard density ρ at fixed N =

5× 103.
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Figure 5: Critical mass µc as a function of the billiard density ρ at fixed

N = 5× 103.
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Figure 6: Fractional mass µ1
∆ = M1

∆/N of the maximal cluster as a function

of ∆ for ten models with fixed ρ = 10−3 and 10 ≤ N ≤ 104 (each line

corresponds to a distinct value of N).
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Figure 7: Mass M1
∆ of the maximal cluster as a function of billiard size N

— each line corresponds to a distinct value of ∆. Experiment is done under

fixed ρ = 10−3.
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Figure 8: Parameters α and c of scaling law (9) as functions of time ∆. Each

line in Fig. 7 corresponds to one point in each panel of this figure. To produce

this figure we used models with fixed ρ = 10−3, and 10 ≤ N ≤ 104.
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