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We consider here the interaction of direct and inverse cascades in a hierarchical nonlinear system that is
continuously loaded by external forces. The load is applied to the largest element and is transferred down the
hierarchy to consecutively smaller elements, thereby forming a direct cascade. The elements of the system fail
(i.e., break dowp under the load. The smallest elements fail first. The failures gradually expand up the
hierarchy to the larger elements, thus forming an inverse cascade. Eventually the failures heal, ensuring that the
system will function indefinitely. The direct and inverse cascades collide and interact. Loading triggers the
failures, while failures release and redistribute the load. Notwithstanding its relative simplicity, this model
reproduces the major dynamical features observed in seismicity, including the seismic cycle, intermittence of
seismic regime, power-law energy distribution, clustering in space and time, long-range correlations, and a set
of seismicity patterns premonitory to a strong earthquake. In this context, the hierarchical structure of the
model crudely imitates a system of tectonic blocks spread by a network of faatesthat the behavior of such
a network is different from that of a single fault. oading mimics the impact of tectonic forces, and failures
simulate earthquakes. The model exhibits three basic types of premonitory pattern reflecting seismic activity,
clustering of earthquakes in space and time, and the range of correlation between the earthquakes. The
colliding-cascade model seemingly exhibits regularities that are common in a wide class of complex hierar-
chical systems, not necessarily Earth specific.

PACS numbg(s): 05.65:+b, 91.30.Px, 91.30.Dk, 64.60.Ht

[. INTRODUCTION and/or momentum is transferred from large eddies to small
ones, eventually dissipating through viscodify}. Another
We synthesize here three phenomena that play an impoexample is plate tectonics—the influence of mantle convec-
tant role in many complex systems. First, the system has #on is transferred to consecutively smaller structyidsEx-
hierarchical structurewith the smallest elements merging in amples of inverse cascadg3] include the escalating se-
turn to form larger and larger ones, the largest element beinguence of earthquakes; avalanches in rock, sand, and snow;
the entire system. Second, thgstem is continuously loaded the consecutive coalescence of fractures in a solid body; for-
or driven by external sources. Finally, tiedements of the est fires and epidemics; the clustering of animals into flocks,
system fail(break down under the load, causing redistribu- herds, schools, and so on; and chain reactions in physics,
tion of the load throughout the system. Eventually the failedchemistry, and economics. In many systems both direct and
elements “heal” and regain their structural integrity, therebyinverse cascades coexist and interact. Loading increases in-
facilitating the continuous operation of the system. stability and causes an inverse cascade of failures, while fail-
The load is transferred from the top of the hierarchy to theures release and redirect loading. In this study we model
bottom, thus forming airect cascaddrom the largest to the such an interaction.
smallest scales. Failures are initiated at the lowest level of The hierarchical structure of the model imitates the active
the hierarchy or tree, and gradually propagate upwardjthosphere, composed of a hierarchy of voluntésocks™ )
thereby forming arinverse cascadélhe interaction of direct separated by faults. Loading in the model imitates the influ-
and inverse cascades establishes the dynamics of the systeence of tectonic forces, while failures imitate earthquakes.
Direct cascades are well known, for example, in the We focus here on theollective behavior of multiscale
theory of three-dimensional turbulent flow where energyfailures, which correspond to the seismicity of a fault net-
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mentsof the system, and each element has its omaex
) consisting of two numbers=(m|g). Here, m is the level
where an element is situated and is enumerated from the

bottom to the top of the hierarchy. The second integer
identifies the position of an element within its level count-
(6[1) (62) (6[3) ing from left to right, namely, from 1 to 3™, wherem
identifies the top level in the hierarchy. Indexing of elements
is illustrated in Fig. 1. It is convenient to describe the tax-
onomy of this system using the imagery of a family tree. The

top element n|1) has three “children”—the eIementsT(

—1/1), (m—1|2), and (—1|3). They are referred to as
FIG. 1. Structure of the three-branched or ternary tree model:'siblings” while the element (n[1) identifies their “par-

Figure shows four highest levels of the seven-level tree, used ignt.” For example, the elementsni- 2|4), (m—2|5), and

simulation. (m—2|6) are the children of the parent element{1|2)

K and he d . ¢ 2 single fail M and the siblings of each other. Conceptually, this structure is
work, and not on the dynamics of a single failure. Moreover.q;niar o that of a wavelet, where the complementary di-

we explore the major robust features of the behavior of col- ensions, crudely, the position and tHegarithm of the

liding cascades. Accordinglly, as iS. _usuaIIy Fhe case |n suc avelength, have a direct physical meaning and significance.
models, we employ the basic condition of failure specified in

Sec. I D below.

Heuristic or empirical constraints are derived from studies
of seismicity. We make the model as simple as we can, pro- The behavior of an arbitrary elemeris described by two
viding a skeletal representation of a real lithosphere with itfunctions, namely, a continuous positive-valued function
immense complexity. Nevertheless, the model reproduces;(t) and a Boolean functiofy(t). We think of o;(t) as the
the major regularities in the observed dynamics of seismic-load” supported by an element and 6f(t) as its “state.”
ity, namely, the seismic cycle, intermittency in the seismicAn element is “whole” or intact whenf;(t)=0, and “bro-
regime, power-law energy distribution, clustering in spaceken” or failed whenf;(t)=1. The direct cascade of loading
and time, long-range spatial correlations, and a wide varietys described by the set of functiofis;(t)} while the inverse
of seismicity patterns premonitory to a strong earthquake. cascade of fracturing is described by the set of functions

We consider here three basic types of premonitory pat{f;(t)}. The dynamics of the system is described by interac-
tern. Two patterns of the first type reflect the rise of seismidion of direct and inverse cascades. The functiot(¢) sat-
activity. The pattern of the second type reflects the rise in thésfy a system of ordinary differential equations with the right
clustering of earthquakes in space and time; and two patternsdes depending upon the functiof(t)}. The functions
of the third type mirror the rise in the correlation distancef;(t) change their values according to certain logical rules or
between the earthquakes. Each pattern was defined sepgonditions that depend upan(t) and{f;(t)}.
rately for different magnitude ranges.

Although the model of colliding cascades reproduces so C. Loading
well the major features of earthquake sequences, the design _
of the model is not specific to seismicity, or even to the more ~First, we introduce equations for the top elemem{X),
general phenomenon of multiple fracturing in solids. Ournamely.
model probably exhibits regularities that are common to a

G | 5I2) [ 5I3) | 514 | (515) | (516) | GIT) | (5I8) | (519)

B. Dynamics

wide class of complex hierarchical systems. Turcettel. . v— Boot) if fot)=
[4] provide a theoretical basis for such universality, outlining O [0— ot)] P (2.2
the connection between seismicity and other processes with — t it f =1

: L O s U= aoygt) if fo(t)=1,
power-law scaling, such as those studied in statistical phys-
ics.

wherev >0, >0, >0, andae>0. Herev is a constant
describing the application of the load to the top element of
IIl. COLLIDING-CASCADE MODEL the system. Note that, in the present realization of the model,

We begin by providing an overview of the structure andthis is the only method for introducing a load into the sys-
dynamics of the simple dynamical system that we are conte™M- The load is transferred in this ternary model to the three
structing. We then proceed to describe the processes of loaglements (—1|1), (m—1/2), and fn—1[3). The rate of
ing, failure, and healing as well as the governing differentialload outflow in Eq.(2.1) depends on the state of the top
equations. Finally, we describe a synthetic sequence of failelement. If this element is whole, i.ef,,(t) =0, then the
ures(“earthquakes’) and demonstrate how it is generated byrate is equal to
the interaction of direct and inverse cascades.

Boop(t)
A. Structure [0—ow(D)]’

We consider a dynamical system acting on the ternary
tree shown in Fig. 1. Nodes of the tree are callede¢hle  whereg is a constant. If this element is broken, i.Bet)
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=1, then the rate is proportional to the load accumulated by

v
the element at that instant of time. ole= p” (2.6
In the stationary or steady state case, when the time de-
rivatives in Egs(2.1) vanish, we have for a broken one. Note that these steady state solutions are
the same as those for the top element via E212) and(2.3).
o = d 2.2 We assume that at time=0 all elements are intact, i.e.,
PSSy, + 8 f;(0)=0, and support no load, i.eg;(0)=0. As given by
Egs. (2.4), the load is added to the hierarchical system
for a whole element, and through the top element and is subsequently redistributed
among all other elements in the tree. Since all dynamical
oP _v (2.3 equations are symmetric with respect to the siblings’ indices
1OP:SS ™ gy (i,51,52), all of the elements on any level retain the same

_ load until at least one element fails.

for a broken one. The load of the top elemem{{) tends to
approach the value®.2) or (2.3), depending on the state of D. Failure
the element. _

It is clear from Eq.(2.1) that the load applied to the top A whole elemeni # (m[1) fails when the following con-
element in the whole state can never excéeWe shall call ~ dition is satisfied:
0 a “critical threshold” for the load.

Equations foro(t) for all i #(m|1) are constructed in a
manner analogous to those fan|(l). The only difference is g=1, s=1. 2.7
that each elemerit: (m|1) receives a load not only from its

parent but from its siblings as well. Furthermore, the rate of 1€7€: the subindicesl, c2, andc3 refer to the three chil-

load transfer depends on the load accumulated by the parefifen Of theith element whilesl ands2 refer to its two
and the siblings at that time, namely, siblings. The exponents of and ofs indicate the number of

broken children and siblings, respectively. If all children and

o (t) > gq* [fea()+feo(t) +fea(t)] XS~ [fs1(t) +Fsa(t)] ,

iri(t)zui(t)—Wi(t). (2.4) 3|bl|ngs of theith element are intact, then this condition re-
uces to
Here o (1) =0,
Bo—i(t) if f,(t)=0 If some of the siblings or children are broken, thie element
Wi (t)=4 [0—oi(t)] is weakened, that is, the threshold for failure is reduced. The
aoi(t) if fi(t)=1 parameters| andsin Egs.(2.7) quantitatively determine this
weakening. Equatiorf2.7) describing the top element re-
and duces to

1-C 1-C Trop()= gq*[fcl(t)”cz(t)*fcs(t)]
Ul(t):CWp(t)+ Twsl(t)-F TWS (1), 0=C=l.
due to the absence of siblings. As we have mentioned above,
the load applied to an intact element can never exaged
Therefore, an element cannot fail until at least one of its
siblings or children fails. Accordingly, the failures propagate

upward and thereby form an inverse cascade.

The subindexp refers to the parent of thieh element, while
subindicessl ands2 refer to its two siblings. In order to
maintain parallelism, we define for the top element

Bt At the bottom level of the tree where the elements have
Otop . _ . . . .
ROl it fop(t)=0 no children, we introduce random failures with a rate propor-
Wig(t) = Ttop _ tional to the intensity of the direct cascade. This mimics
ao(t) it fop(t)=1, “juvenile cracking” in earthquake phenomenology. ltgbe
the time when the load of an element rises close to the sta-
Utop(t) =v. tionary value,o;(t)= o'~ € for € small and positive. This

. . . o ) element fails at a later timés+ x, where y is a random
With this notation, the loading is described by the SySterT\/ariable, distributed exponentially with a decay timeThis

(2.4). randomness ensures that the dynamics of our model shows a

As before, the load supported by an intact element Cagegree of inhomogeneity in spite of the above mentioned
never exceed the critical threshold In the stationary case,

i o . ! symmetry.
when the time derivatives in Eq&.4) vanish, we have the
steady state solutions E. Healing
wo_ Ov 5 In order to ensure the perpetual operation of our system,
Tiss— +B (2.9 we introduce the effect of “healing,” i.e., the restoration to

an unbroken state of a previously broken element. Otherwise
for a whole element, and the system will cease to function once all elements have
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failed. We assume that a broken element heals when th(a) -
following two conditions hold during the ensuing exponen-

tially distributed time interval with a decay tinie At leastn
children of theith element are intact, and

oi()< 0q Fer®+fea® +fesOg~ a O+ 0] (2.g)
Finally, at the bottom level we replace the latter by

ai(t)< 6. 2.9

Having formulated our model, we now provide it in dimen-

sionless form.

F. Dimensionless equations

Equations(2.4) contain values ofr;(t) measured in units
[u], and time measured in unif¢]. Meanwhile, the vari-
ablesv andB are measured in unifai/t], variableé in [u],
a in[t™1], and\ andL in [t].

We now define a time scalg= 6/v. Let us introduce the
following dimensionless variables:

TEt/to, E'i(T)E 9

and dimensionless parameters

y=plv,

~ «ab

a=—.
v

We then obtain the dimensionless equations
ai(n)=0i(n)—W(7). (2.10

Here

. 9D fn=0
Wi(7)=3 [1—0oi(7)]
aoi(7), if  fi(rn)=1,

~ ~ 1-C . 1-C -
Ui(T):CWp(T)+Twsl(T)+TW52(T)

i#(m[1),
Ui(n=1, i=(ml1).
As before, the subindep refers to the parent of théth

element, while the subindicesd,s2 refer to the two siblings
of ith element.

G. Sequence of failures

The colliding-cascade model determines for each element
both the loadr;(t) and the staté;(t)—whether the element
is broken or whole. In many relevant processes, includin
seismicity, the data for failure events are especially complet
since it is easier to both measure and catalog the failures thayp

the load. We represent the sequence of failures as
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FIG. 2. Synthetic earthquake sequence. The complete sequence
is shown on the top panel followed by exploded views in the fol-
lowing three panels. Note that all times given, in this and subse-
quent figures, are in dimensionless units.

k=1,2,..., (2.12)

(tk, M, k), testyr
Here,t, is the time of failure for an element, whereag and

gy indicate its position within the moddkee Fig. 1 The
usual basic representation of an observed earthquake se-
guence is very similar to Eq2.11), where the vectogy
constitutes the coordinates of the hypocenter, i.e., the actual
point of origin of an earthquake evefthe epicenter is its
projection on the Earth’s surfaceOften overlooked, how-
ever, is the fact that the region of rupture, which we will later
call L, is 10—10° km in extent for earthquakes with mag-
nitudes between 7 and 8. Earthquakes rasepoint source
events. An earthquake starts with a localized rupture that
then spreads on a complex surface of finite dimensions and
has distinctly different near-field, intermediate zone, and far-
field effects.

Strictly speaking, this model has no three-dimensional
space of hypocenters, but we reggrtb be a coarse analog
of the hypocenter, since it identifies the position of a failed
element in relation to other ondsee Fig. 1 Finally, we
regard the valuen in synthetic earthquake sequences as an
analog of the earthquake magnitude—the latter is a logarith-
mic measure of energy released by an earthquake.

An example of the sequence generated by the colliding-
cascades model is shown in Fig. 2. It was computed using
the numerical parameters provided in Table I. The entire
sequence is shown in the top panel, followed by a sequence
of exploded views. Each event is formed by simultaneous
failure of one or more elements. In a case when several ele-
ments fail at the same time, only the events at the highest

TABLE |. Values of parameters used in computations.

@ c q s € N L n

272 0.9 1.096 1.03 01 30 34 2
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t =-45.00 t =-3.00 duces the basic regular features of real seismicity.

Ill. HEURISTIC CONSTRAINTS:
o o o o o o REGULARITIES IN OBSERVED SEISMICITY

Real earthquake sequences exhibit a high degree of com-

(a) (b) plexity put, upon gveraging, manifes_t a remarkable degree of
¢t =-0.80 { =-030 regularity—such is the usual case in complex systems. We
summarize these features in this section and compare them
with synthetic seismicity in Secs. IV and V.

A. Seismic cycle

The level of seismic activity or seismicity in an area goes
through three different phaséS]. First, there is a“preseis-
mic” rise culminating in one or several major earthquakes.
This is followed by a period of “postseismic” activity,
which gradually declines with time. Finally, there emerges a
long period of relatively low activity that ultimately returns
to another rise, and so on. Such transitions take place in
different time and space scales. The characteristic time inter-
val between the strongest earthquakes in active regions, such
as southern California, is of the order of'2.(? years. Usu-
ally, however, there is no real periodicity. Observed intervals
: : between major earthquakes depart considerably from the
mean, and the character of each phase in the ‘“seismic
cycle” varies strongly from case to case. In different epochs,

. seismic cycles may culminate in earthquakes of different
magnitude. Generally, a seismic regime exhibits large inter-

(2 " (h) mittency.

olefe]e]"

Tolslelelelelelelolalalalok

FIG. 3. Cascades in the five highest levels of the model. Figure
portrays the case history of a cycle. Shading is employed to de-
scribe proximity in time to failure—the darker the shade, the closer Otherwise known as th&utenberg-Richtetaw [6—11],
an element to the critical thresholtl Black dots identify broken the energy distribution of earthquakes in a fault system may
elements. The time remaining to the major event is indicated at eache approximately described as
frame.

B. Power-law energy distribution

logig N(m)=a—bm. (3.1

level in the hierarchy are indicated. The vertical scale shows
their maximum level, referred to as a “magnitudet. Here, N(m) is the average annual number of earthquakes

Figure 3 shows the interaction between direct and inverswith magnitude aboven in a specified spatial region. This
cascades prior to a major failure, i.en=7, and following law is valid for sufficiently large fault systems and time in-
its aftermath. Until some timé.e., the initiation of rupturg  tervals and for a certain magnitude rarige,,m,] [8]. It is
we can see only a direct cascade moving downwardAf- important to note that it doesot describe the frequency of
ter a while(b), the cascade has reached the lowest level andvents on a small-scale, individual fault. Typicallys 1, not
triggers the inverse cascade that is showfc)nThe inverse changing much with variation of the geometry of the fault
cascade triggers the rupture that in turn triggers secondargystem, the local tectonics, and so on, thereby hinting at a
direct cascades. Pan@) describes the instant when inverse universal mechanism for the dynamics of seismicity.
cascade has reached the second-highest level, namely, level, The power-law energy distributiof8.1) is at the heart of
6. The elements with the darkest shading identify a secondnany models of seismicity. It is noteworthy, therefore, that
ary direct cascade, triggered by a failure at that level. MeanEq. (3.1) is only an approximation to real seismicity. The
while, the secondary direct cascade is evolviggand trig-  most frequently observed deviations from E8.1) that are
gers an aftershock at level ((he darkest broken element not attributable to inaccurate observations are summarized
Panel(f) demonstrates another inverse cascade that is initibelow.
ated in the right hand branch of the model. It triggered in- (&) log;o N(m) bends over or changes slope at the largest
stantaneous failure that propagated to top level. These faimagnitudeg6,8]. In the case of a downward bend, the Kol-
ures are connected in the figure. Pafgl shows that yet mogoroff log-normal relatiori12], which describes the dis-
another secondary direct cascade has started. Finally, the itribution of the size of the rocks in a fractured massive re-
verse cascade is weakenifiig). Healing prevails until the gion, sometimes happens to fit the earthquake energy
subsequent direct cascade reaches level 1. distribution better than Eq3.1). In some cases, however,

In subsequent sections, we investigate whether synthetitere is an upward ber{d 3], or the values oN(m) for the
seismicity generated by the colliding-cascade model reprofargestm are scattered above the power-law approximation
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(3.1). Such magnitudes are often attributed to what is some-(a) 5
times called a “characteristic earthquake,” an event having 5 5
the maximum possible size in the region considdigd4]. e b 3

(b) log;p N(m) may be represented by a collection of 1 1
overlapping power laws with statistically significant differ- 0
ences in the slopb of the different segments8,15]. (This
refers to the whole magnitude range, as well as to what was
described above for its endls.

(c) The shape and parameters of the energy distributior, b) g : 5 : 7
change with time. This includes two kinds of changes pre- 5 ML i 5
monitory to a major earthquakél) The upward bend of s Hi - 13
distribution for relatively largen[13,16); it reflects premoni- 1 . 1
tory increase of seismic activity2) A possible increase in 10 1 o1 010° 102 100 1 10
the b value for smaller magnitudes. [A5] such changes are Time
found both in the observed seismicity and in fracturing of
steel samples. FIG. 4. Composite catalog. All cycles are combined, with each

(d) For the physical interpretation of the Gutenberg-major event placed at time=0.
Richter law(3.1) its multiscale nature is primafL0,8]. Sta-

tistics of earthquakes with magnitUdB have to be estab- Such premonitory phenomena7 forma”y deﬁned, have
lished in spatial regions of linear dimension much larger thamheen used in algorithmic earthquake prediction—{2e23
L(m), the characteristic dimension of the earthquake sourceand references cited therein. We apply here the same defini-

Accordingly, the parameters andb have to be determined tions of premonitory behavior to synthetic seismicity gener-
for increasingly larger areas, when larger magnitude rangegted by our model.

are considered. The above deviations from the power law |n addition, we consider acce|erating Benioff stress

(3.1 depend on the spatial scale considered. For larger rgelease—a precursor described [24—27. It consists of
gions some of them may disappear. power-law escalation of seismicity possibly including an ac-
We now return to other forms of regularity observed in celerating and, possibly, log-periodic oscillatory component.
seismicity.
IV. SYNTHETIC SEISMICITY: SEISMIC CYCLE,
_ ENERGY DISTRIBUTION, AND CLUSTERING
C. Clustering

Earthquakes are observed to cluster in both space and I—]gre, and in the next section, we demonstrate that the
time[9,17,18. A typical cluster is a main shock, namely, the colliding-cascade mo_del _rgproduces_ many of the regular fea-
earthquake, followed by a string of weaker shocks, calledures of ObSET"ed seismicity, des_cnbed in the Previous sec-
aftershocks. Some earthquakes are also preceded by for2"- The major advantage provided by our synthetic se-

shocks of a smaller magnitude. Typically, about 30% ofduence is the relative s?mplicity of its tem_poral structure.
main shocks have foreshocks. The numbe'r of foreshocks i hat facilitates the establishment of connections between dif-

usually small. Clusters of another kind, known as erent forms of regularity, and the possible identification of
“gwarms.” are.formed by main shocks of com,parable mag—yet undiscovered regularities or patterns, which can then be

nitude that occur in proximityin both space and timeo validated by analysis of observations.

each other, with their own overlapping sets of aftershocks Seismic _cyclesAbput half of the time, the sequence
and foreshock§19]. shown in Fig. 2 consists of well-separated cycles, culminat-

ing in a “major event” of magnitude 7. There is clear inter-
mittency in the seismic regime—seismicity is very different
during the time interval 900—2200 time units—the magni-

Often, a strong earthquake in a region is preceded by a s@ides there do not exceed 6, and separation of the record into
of unusual patterns of seismicitf20—22 and references individual time cycles is not clear. Possibly, this interval
therein. This anticipatory behavior was summarized byincludes shorter seismic cycles culminating in earthquakes
Keilis-Borok [23] as follows. Typically, a few years in ad- with m=6. Such seismic intermittency is also typical in real
vance of a strong earthquake, a sequence of seismic eventsdgaismicity. A composite portrait of the seismic cycle is
a medium magnitude range becomes increasingly intense amsthown in Fig. 4. All seismic cycles are superimposed in this
irregular. These events become more clustered in both spadigure with each major event centered at the same time ori-
and time, and their correlation distance probably increasegin, i.e.,t=0. The top panel shows all earthquakes, in a
All of these phenomena may be caused by an increased rénear time scale, while the bottom panel shows mainshocks
sponse of the lithosphere to excitation. and aftershocks in logarithmic time scale.

The scaling of these phenomena depends on the scale of Energy distribution.Figure 5 shows the energy distribu-
the “strong” earthquake they foretell. L&l be its magni- tion in our synthetic earthquake sequence. We see that it fits
tude, andL(M) be the linear size of its source. These phe-well the Gutenberg-Richter la\8.1) without strong devia-
nomena are defined, then, in the magnitude range down tions.
aboutM —4, and in a region of linear dimension o£510L. Clustering. We have identified the aftershocks by the
They precede a strong earthquake by a few years. same method as is used in analysis of observations; it is

D. Premonitory seismicity patterns
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FIG. 5. Energy distribution function, lggN=a—bm whereN is the number of events with magnitude Note that the magnitude is
given discrete integer values from 1 to 7.

described in the Appendix. Statistics of aftershocks aréd, N, andX. Figure 6 illustrates this division. An interval
shown in Fig. 5. We see here the features in common witlprecedes a major earthquake—that letter is chosen to mne-
real seismicity—aftershocks constitute about half of themonically represent “danger.” An intervaX follows it and
earthquake events, and tlheparameter of the Gutenberg- is characterized by post-major-earthquake activity, including
Richter law for aftershocks is slightly higher than for main waning aftershock sequences. The latter have a characteris-
shocks. tically inverse time rate of occurrence sometimes known as
Omori’s law. The rest of the time between the major earth-
guakes comprises th@ull) intervalsN; thus, they are dis-

V. SYNTHETIC SEISMICITY: tanced from major earthquakes. This division of time allows

PREMONITORY SEISMICITY PATTERNS

Here we apply to the analysis of earthquake precursors ai
approach known as “pattern recognition of infrequent
events.” It was developed by Gelfand co-workers over two

decades ago for the study of rare phenomena of highly com Interval D

plex origin, a situation where classical statistical methods are/; ... v Part of interval D Interval X Interval N
inapplicable. The methodology of pattern recognition is very = e - Ej
robust and its essence will be clear from the way synthetic i D

data are analyzed here. In our problem, the goal of patterr 20 Tim_g

recognition is the identification of behavior that almost al-
ways occurs before a main shock, yet almost never occurs FiG, 6. Division of time into three kinds of periods: interval
otherwise. A more detailed description can be founf28].  p—jess than 20 time units before a major evem=(7); interval

In this approach to the search for earthquake precursorg—within 20 time units after a major event; and interb—all
we conventionally divide the time period considered into in-other time intervals, except empty ones. Premonitory phenomena
tervals of three kinds, which are designated by the symbolare considered in the laBt, time units of each intervaD.
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us to explore precursors by the pattern recognition approacldifference of these densities, namely,

A precursor is recognized if it seems to emerge in the inter-

vals D more frequently in a statistically significant way than A(Bm)=Pp(Bm) — Pn(Bp).

in intervalsN. (Ideal precursors emerging only in the inter-

vals D have yet to be foun@l.The application of such an

approach to the observed seismicity is describef28129 .

aﬂg references therein. Several pre}c/:ursors considered in tﬂéBm’ and negative fqr smaller ones..

next section have been identified using the above condition. To make our analysis robust,“vve dlv,l,de“all th_e vayl,ueB of

Now, we explore whether they exist in our synthetic seismic-!‘mO trlree groups, namely, “small, m_ed|um, and

ity. large.” They are separated by the pgrcgn.tllles Qf the levels
First, we eliminate the intervalX from the search for .33'3% and 6.6.'6%' In other words, this .d'V'S'on is made us-

precursors, since these intervals are dominated by speciﬂeg the condition that each group contains equal nu_mb_ers of

features of post-major-earthquake activity, even if we ex£vents and, therefore, equal numbers of valBeghis is

clude aftershockqThese intervals, however, are considereddone for the mteryal@ andN t_aken togeth(_ar S0 that|_or|o_r|
nowledge of major events is not used in discretization of

separately for prediction of a second strong earthquake, in Iér\] . :
- : - e values ofB. The functionsA (Bg) andA(Bs), thus dis-
pair [30]. This problem is beyond the scope of the presem}:retized, are shown in panelg) and(b) of Fig. 7 . The last

stud . . . . .
y) D=5 time units are considered in the intervBisNote that

The exact duration ob intervals is not knowra priori. As g W learly that th .
To ensure sufficient separation between inten@land N, Is given as a percentage. We see clearly that the generation
of aftershocks tends to be larger h Similar results were

we consider in each interv@ only the finalD, time units .
preceding a major event. Empty intervals between the cycle@Pt@ined fom=2, 3, and 4.
are disregarded.

We assume the duration 20 time units for the intenils
and X, independently of what precursor is exploréy, is Following [29,35 and references therein, we consider
chosen to be 3 or 5 time units, depending on the precursortwo functions reflecting the premonitory rise of seismic ac-
tivity. These functions ardl,(t|s), defined as the number of
main shocks with magnitude, and

If large values ofB,, preferentially occur prior to a major
event, then the functioA should be positive for these values

2. Premonitory rise of seismic activity

A. Statistically significant precursors validated
by prediction of real earthquakes

Sn(tls) =2 S(tls).

The precursors considered here have been identified by
the analysis of observations of real earthquakes, with the _ )
pattern recognition approach described abd&i,22 and Here, S, is _th_e area of rup_ture in the earthquak_e source,
references therein They are defined on the sequence ofWherek again is its number in the sequence of main sh(_)cks.
main shocks. Elimination of aftershocks from the sequence iSUmmation is taken over all the main shocks with magnitude
necessary for the following reason. On average, the totdfSS than or equal to. In the analysis of real observations,
number of aftershocks grows with the magnitude of the mairfis area is crudely estimated from the earthquake magni-
shock. Therefore, unless aftershocks are eliminated, the relé#i4de. For synthetic seismicity, we assume tBat3™ ™,
tively strong main shocks would be represented in premoniwherem is the index of the top level; this value is propor-
tory patterns twice—by themselves and by their aftershocksional to the number of elements at the lowest or first level
However, for each main shock, we retain the number of itghat are the offspring of the element on levelFig. 1). The
after;hocks; the§e numbers are used in the definition of prexyniripution of the top element, namelyﬂ(l), is unity.
monitory clustering. Both functionsN,(t|s) andX ,(t|s) are counted in a sliding
time window {—s,t), wheres=2. Note that their values are
attributed to theendof this window so that information from

We consider as a measure of clustering the functiorthe future is not used. Panels)—(e) of Fig. 7 display the
Bm(tkl7) which identifies the number of aftershocks within a functionsA(N;), A(N,), andA(2g). The finalDy=3 time
time interval 7 following a main shock31-33. Here,m is units are considered in the intervdls We clearly see that
the magnitude of the main shock, whitedentifies its posi- each measure tends to be largerDn Similar results were
tion in the sequence of main shocks. Thusdenotes the obtained folN,,, m=3,4,5, and fo.,,, with mvarying from
time of the first main shocki, the second, and so on. In 2 to 5.
earthquake prediction studieB,,, is assessed over a very
short time interval, namely7-=2 days, while the ensuing B. A precursor explored by retrospective analysis
aftershock sequence may last a year or more. The application  of observations: “Accelerated Benioff strain release”
of this measure to observed seismicity is described in detail
in [31,34]. In our analysis of synthetic events, we assume
=0.05 time units.

Let Pp(B,, be the density distribution of the values of
B,, taken collectively from all intervalsD. Similarly,
Pn(Bp) is the density distribution corresponding with the e(t)=e€o—B(t;— )"
intervalsN. Precursory behavior in the varialg,, is char-
acterized, according to a familiar Bayesian approach, by thélere, € is the cumulative Benioff stress release

1. Clustering

In the studies by Bufe and Varneg24], Sornette and
Sammis[25], Newmanet al. [26], and Johanseat al. [27]
(see also references thergipremonitory escalation of seis-
micity is represented by the empirically based function



PRE 62 CRITICAL TRANSITIONS IN COLLIDING CASCADES 245

(a) (b)

: . .
10
10
g 1.

A(By) A(B;) o
]
56 -10
.30 -20
.40 : _ 30 - :
Low Medium  High Low Medium  High
(©) (d) FIG. 7. Premonitory phenom-
80 T 80 ; ena depicted by the difference of
60 60 . distributions within intervalsD
andN. A(F) is the difference be-
40 R G il tween distributions of values of
premonitory functionF(t) within
A(Nl) . A(NZ)ZO intervalsD and N. Concentration
0 0 of high values of the function
F(t) within the intervalsD is de-
=0 20 N picted by positive differences
.40 i . _ 40 i - : A(F), which can be(a) A(Bg);
Low Medium  High Low Medium High (b) A(Bs): () A(Ny); (d) A(N,);
(&) A(2e); or () A(R).
(e) ()
80 ; 10
60
40 5
A 2 A(R)
0 ) B
-20
H 5 ‘
40 Low Medium  High 2 3 4 5
R
1o phenomenon was hypothesized by Keilis-Bof@K]. How-
6=2 Ei ever, specific precursors of that type are introduced in this
paper.
as a funCtlon Of t|me over the |ntervaloct), Ek |S earth' 1. Range of correlation (precursor ROI:

guake energy estimated from the magnitude with the sum-
mation taken over all earthquakes in the region without the
elimination of aftershocks, ant is the actual time of a 9
strong earthquake. Figure 8 demonstrates this phenomendn
on the composite seismic cycle shown in Fig. 4. We see th
€ indeed is rising steeply starting at about 10 time units
before the major earthquake. Parial in Fig. 8 gives the
usual representation of that function while pari®l shows
that, during a time interval from-5 to —1 time units, the

function € is rising according to a power law, with=0.4. _ _ _ _
However, unlike the reported real observations, the growtiwherem, is the level of an element from which bottand;j

of synthetic seismicity terminates about 0.5 time units beforglescend. LeR(7) be the pairwise distance(i,j) between
a major earthquake. the main shocks, which occurred within an inter¢afrom

each other. The functioA(R) is shown in pane(f) of Fig.
. o ) 7. The lastDy=3 time units were considered in the intervals
C. Potential precursors not yet identified in observations D and a threshold=0.1 was used. We clearly see that val-

We consider the premonitory increase in the range of spades ofR tend to be larger irD. A related effect was intro-
tial correlation between the earthquakes. Qualitatively, thigluced into studies of the dynamics of seismicity by Prozorov

Consider two main shocksty,g,,m) and ¢,,g,,my)
enerated by the failure of elemenis=(m;|g;) and j
(m,|g,). The pairwise(ultrametrig distancer(i,j) be-
een these elements along the ternary tiese Fig. 1is
efined as

min(m,—my,my,—m,),
Mp
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FIG. 8. Premonitory escalation of the failure sequence—the power-law rise of the cumulative Benioff stressrélbadenctione(t)
is determined for the composite sequefsee Fig. 4 with aftershocks includeda) Linear scale. Dark zone at the right marks the interval
[—5,—1], where power-law behavior is observed. Dark zone at the left marks interval with linear behaviobpBilogarithmic scale.
Line corresponds to the power la#t) = e,— B(t;—t)* with parameter8=47.3, «= 0.4 estimated by the least squares method within the
interval[ —5,— 1]. Parameteg, equalse(0)=117.1. Note that values off— €) are shown in the reverse direction.

in the early 1970436]. He considered “long-range after- is shown in panela) of Fig. 9. Their differenceA(A) is
shocks,” i.e., intermediate magnitude earthquakes, whictshown in pane(b). The lastD,= 3 time units are considered
sometimes follow a major earthquake within a short timein the intervalsD. Computations are made with the threshold
interval. According to these studies of real data, such after€,=1/9. We clearly see that values Aftend to be larger in
shocks mark the location where another major earthquake B. In application to real observations, the different branches

going to occur. of fault zones, which are known to be organized hierarchi-
cally, have to be considered instead of branches of the
2. Accord model.

This precursor depicts simultaneous rise of activity in the
three major branches of the model that descend from the
elements on the second highest levek=6. The intuitive
significance of this precursor is that several branches of the We enumerate below how the colliding-cascade model
tree are undergoing simultaneous activation. Hence, the ter@ompares and contrasts with real seismicity.

“accord” is appropriate since it means) to be in agree- (1) The colliding-cascade model indeed reproduces the
ment, and(ii) in music, to strike several chords at once.  basic features of observed earthquake sequences, although
We consider the functiol 4(t|s), defined in Sec. VA 2, the latter are more complicated and irregular. Seismicity gen-
individually for each branch. Our precursor is depicted byerated by this model satisfies the basic empirical pattern de-
the functionA(t) which is the number of branches where rived from observations—the seismic cycle, intermittency of
S4(t|s) simultaneously exceeds a common threshold, sayhe seismic regime, power-law energy distribution, earth-
C,. By definition, A(t) may assume only integer values quake clustering in space and time, and a set of seismicity
from O to 3. The distribution of(t) in the intervaldD andN patterns premonitory to a strong earthquake. These seismic-

(a) (b)

100 ; 100 ;

VI. DISCUSSION

’ A(4) o B |

50 |- 50

100 i i i -100

FIG. 9. Premonitory increase of the range of correlation—simultaneous rise of activity in the major branches of th@praodedor
called Accord. A(t) may assume integer values from 0 to 3. The [agt 3 time units are considered in the intervéls ThresholdC,
=1/9 is used.(a) Density distributions, in percent, d&(t) in the intervalsD (upward dark bapsand N (downward light bars (b)
A(A)—difference of these density distributions.
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ity patterns include the three patterns established by statisteonfirmed by real observations. Our modeling has suggested
cally significant prediction of realobserved earthquakes. several so far unobserved precursors depicting an increase of
They reflect the premonitory rise of seismicity and earth-the range of correlation in earthquake sequences. These in-
guake clustering. Two additional patterns reflecting premoniclude the simultaneous escalation of activity in major
tory increase of the range of the earthquakes’ correlatiolranches of a fault system—this would be depicted by the
have been found in the model and have become candidaecursor “Accord;” the increased number of faults in-
premonitors for real events, which we plan to test by thevolved in a premonitory escalation of activity—this would
analysis of real observations. be depicted by the precurstiROC;” and the more general

We have reproduced using a single model a broad set akalization of the same phenomenon expressed in a spreading
major features of the dynamics of seismicity. This agreementf the premonitory escalation of seismicity over an increas-
between model and observation provides strong support timgly larger area. These precursors may be used in parallel
the colliding-cascade concept. We find of particular impor-with other ones, or they may help to discriminate the false
tance the reproduction of the three major types of premoniand confirmed alarms obtained with other precursors.
tory seismicity patterns. Note, also, that we have explored (4) The model allows us to explore a broad variety of
here the collective behavior of the fault network. Due to theother relevant phenomena. For example, different measures
scale invariance of such networks, this behavior may bef loading may be considered, ranging from straightforward
manifest on different scales. However, this similarity may beones(e.g., stress or energyo geometric incompatibility in
limited [23,3Q and is probably not applicable to a single the fault systen]21] (this is due to the driven motion of
fault of a nonhierarchical structure. disjoint and disparate fragments of crustal materiadading

Here we detail the differences between observed and syrcan be applied to more than one level of the model, and not
thetic sequence$a) Real seismic cycles do not have the necessarily to the top one. We have considered thuinfiar
same degree of periodicitybp) during real seismic cycles, independentoading. It is certainly worth exploring the case
periods of low seismicity are not as “silenty(t) the energy when the loading is changing in time. The relevance of such
distribution in the observed seismicity has considerable dechanges to formation of earthquake precursors is discussed in
viations from the Gutenberg-Richter power law at the largesf2,13]. Moreover, the model may be truncated from above so
and smallest magnitudes; afd) a distinction between the that the top level will consist of several elements.
intervalsD andN is much clearer in synthetic seismicity than  (5) We have considered, thus far, the dynamics of the
in the observed one, or in other words, premonitory phenommodel with fixed parameters. It remains to be seen how the
ena(not unexpectedlyare more prominent in the model.  occurrence of major events is influenced also by change of

We believe that these quantitative differences are a manthe parameters, e.g., loading, strength, time of healing, and
festation of the relative simplicity of our model. On the so on.
whole, the model provides an acceptable description of the (6) The colliding-cascade model is not particularly earth-
dynamics of seismicity. In particular, no other existing quake specific. At the same time, it reproduces the precursors
model to our knowledge has shown such a wide set of spatidhat were first discovered in observed earthquake sequences.
temporal structures characteristic for real seismicity preced¥his confirms the previous conclusion, ad 28,38 and ref-
ing major earthquakes, albeit several precursors have beamences therein, that these precursors are not earthquake spe-
shown to be reproducible in the moddlee[13,37). In-  cific but symptomatic of more general features of critical
deed, simplicity is an essential virtue of the colliding-cascaddransitions in hierarchical nonlinear systerfighe features of
model, since it facilitates the model’'s exploration, testing,the seismically active lithosphere may be reflected, of
and application. Moreover, it facilitates understanding of thecourse, in the values of the parameters of the mpdahe
processes considered, while reproducing their high complexeéan hardly doubt that earthquake-specific precursors also ex-
ity. The basic characteristics of seismicity considered herést, but they have to be reproduced on models of a different
are robust. Extensive numerical experiments have demorkind (e.g.,[21]).
strated that they are stable to initial conditions. (7) The colliding-cascade model is more complex than

(2) In Sec. V, we established that the precursory phenomether models advanced to describe the earthquake phenom-
ena associated with real earthquake sequences are a hallmaria. It lacks the grand simplicity of slider blogR9], sand-
of our synthetic seismicity. The essential value of such prepile [40], and fiber bundI¢26] models. This is largely due to
cursors is that the ability to identify them could lead to athe fact that we have considered both inverse and direct cas-
significant predictive capacity. The performance of precurcades. Also, we have attempted to describe the full scope of
sors is a measure of their overall success. Not only must thehenomena observed in real earthquake sequences—namely,
presence of a precursor establish that an event will occur, bihe seismic cycle, power-law energy distribution, clustering
the absence of a precursor must establish that an event wilh space and time, as well as premonitory seismic
not occur. The performance of a precursor, therefore, musactivity—by incorporating a richer set of interactions. Nev-
involve the ratio of its successes to failures, and it must bertheless, it would be a worthwhile endeavor to explore
applied to the prediction of individual strong events in bothwhether the same phenomena may be reproduced by a sim-
real and synthetic seismicity. We must learn how to avoidpler model.
“false alarms,” yet maintain confidence that no significant We remain optimistic that the richer array of phenomena
event will go unpredicted. This will be a topic of a separatedescribed by this model, and its overall agreement with the
study. basic premonitory characteristics evident in real earthquakes,

(3) The ultimate measure of success of a model is thewill ultimately facilitate the design of better algorithms for
discovery of previously unknown phenomena, which arethe prediction of real earthquakes.
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APPENDIX: DEFINITION OF AFTERSHOCKS given by Molchan and Dm|tr|evB]_8]
_ We employed a similar definition for synthetic seismicity.
An aftershock is a child or a sibling of a main shock of
magnitudem that occurred within a time intervadl(m) from

In the analysis of precursory behavior in observed seis
micity, we employed 31] the following definition of after-

shocks: X X 4
the main shock. For convenience, we assumed time thresh-
Mj=<M;; oldsT(m)=m, m=1,2,...,7. Theestriction of aftershocks
to the children and siblings of a main shock is a coarse ana-
0<tj—t;<T(M)); log of the proximity of epicenters in real seismicity.
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