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Abstract. We construct a family of semialgebraic sets of bounded fewnomial
complexity, with unbounded fewnomial complexity of their projections to a
subspace. This implies impossibility of fewnomial quantifier elimination. We
also construct a set defined by exponential algebraic functions such that its
projection cannot be defined by a quantifier-free formula with exponential alge-
braic functions, even if division is permitted. Similar examples are constructed
for the unrestricted frontier of fewnomial and exponential semialgebraic sets,
and for the Hausdorff limits of families of such sets.

1. Introduction

The theory of fewnomials was created by Khovanskii [8, 9] in the end of 1970s
as an important special case of his theory of Pfaffian functions (real analytic func-
tions satisfying a triangular system of first order partial differential equations with
polynomial coefficients). A fewnomial (see Definition 2.1 below) is a polynomial
with a few nonzero monomials or, more general, a polynomial defined by a formula
with bounded additive complexity [13]. The Bezout-Khovanskii theorem for Pfaf-
fian functions establishes an efficient upper bound on the number of isolated real
solutions of a system of Pfaffian (in particular, fewnomial) equations. This allows
one to derive upper bounds on the topological complexity of semi- and sub-Pfaffian
sets, and on the complexity of certain operations on semi-Pfaffian sets, such as
stratification and restricted frontier (see review [7] for the definitions and further
references). Examples presented in this paper show that upper bounds on com-
plexity do not exist for quantifier elimination and the operations of unrestricted
frontier and Hausdorff limit.

The famous Tarski-Seidenberg theorem [16, 14] asserts that projection of a real
semialgebraic set to a subspace is again semialgebraic, i.e., quantifier elimination
is possible in the semialgebraic category. An example of Osgood [12] shows that
this result cannot be extended to semianalytic category, even if all variables remain
bounded: the set

Y = {(x, y, z) ∈ [−1, 1]3, ∃u ∈ [−1, 1], y = xu, z = x exp(u)}(1.1)

is not semianalytic, although it is a projection of a compact semianalytic set.
Let X be a semianalytic set in Rn, defined by a formula (2.1) below with real

analytic functions Pij , and let Y be a subanalytic set, a relatively proper projection

Date: October 6, 2006.
Key words and phrases. fewnomials, quantifier elimination.
† Supported by NSF grants DMS-0200861 and DMS-0245628.

1



2 A. GABRIELOV

of X to a subspace of Rn. Gabrielov’s complement theorem [3, 4] for subanalytic
sets states that the complement to Y is again a relatively proper projection of
a semianalytic set Z ⊂ RN . This implies model completeness of the structure
generated by global analytic functions, i.e., functions y = f(x), x ∈ Rn, y ∈ R
such that, after embedding of Rn in RPn and R in RP1, the graph of f becomes
a semianalytic subset of RPn × RP1. Denef and van den Dries [1] proved that
quantifier elimination is possible in that structure if bounded division is permitted,
the ratio of two functions f and g being defined as f(x)/g(x) when g(x) 6= 0 and
|f(x)| ≤ |g(x)|, and 0 otherwise. For example, the set Y in (1.1) can be defined as

{(x, y, z) ∈ [−1, 1]3, x 6= 0, |y| ≤ |x|, z = x exp(y/x)} ∪ {(0, 0, 0)}.
Without the properness condition, projection of a semianalytic set may be rather

wild. However, this does not happen for semi-Pfaffian sets. Wilkie [18] (see also
Speissegger [15]) proved that the structure generated by all Pfaffian functions is
o-minimal. Accordingly, one should consider separately results for restricted (with
the properness conditions, see Definition 2.4 below) and unrestricted semi- and
sub-Pfaffian sets.

For a restricted semi-Pfaffian set X , the set Z in the complement theorem can
be chosen also restricted semi-Pfaffian. Gabrielov and Vorobjov [6] proved that
the Pfaffian complexity of Z can be bounded from above in terms of the Pfaffian
complexity of X . A key step in establishing that upper bound was the complexity
of the restricted frontier of a semi-Pfaffian set X (i.e., frontier within the domain
of definition of the Pfaffian functions in the formula for X). According to [5],
restricted frontier of X is a semi-Pfaffian set of the complexity bounded from above
in terms of the Pfaffian complexity of X . In this paper, we show that this is not
true for the unrestricted frontier, even in the fewnomial case, when the frontier is
semialgebraic.

One of the most important results for the unrestricted case is the Wilkie’s com-
plement theorem for the structure generated by the exponential function [17]. Van
den Dries, Macintyre and Marker [2] showed that quantifier elimination is possible
if we allow bounded division in the structure generated by global analytic functions
and unrestricted exponential and logarithmic functions. The complement theorem
for unrestricted Pfaffian functions remains an open problem, although Lion and
Speissegger [10] proved it for the closely related “Rolle leaves.” No upper bounds
on the complexity are known for the unrestricted case.

2. Counter-examples for fewnomial expressions

Definition 2.1. [9, 13]. A polynomial F (x) in n variables x = (x1, . . . , xn) is a
fewnomial of complexity m if it can be constructed from constants and independent
variables with at most m additions and any number of multiplications. A point x
is regular for a fewnomial F if, whenever there is a product of two polynomials P
and Q in the expression for F , we have P (x)Q(x) 6= 0. The domain of definition
of F is the set of all its regular points.

For example, a polynomial with m nonzero monomials of arbitrary degree is
a fewnomial of complexity m − 1. Its domain of definition is the complement to
coordinate hyperplanes.

Definition 2.2. A rational function F (x) is a fewnomial with division of com-
plexity m if it can be constructed from constants and independent variables with at
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most m additions, and any number of multiplications and divisions. A point x is
regular for F if, whenever there is a product or a ratio of two terms P and Q in
the expression for F , both P (x) and Q(x) have finite nonzero values. The domain
of definition of F is the set of all its regular points.

Definition 2.3. A semialgebraic set X ⊂ Rn is defined by a formula

X =
{
x ∈ Rn,

⋃
i

(⋂
j

(Pij(x) ? 0)
)}

(2.1)

with polynomials Pij and ? ∈ {>, <, =}.
Definition 2.4. A fewnomial semialgebraic set X of complexity (m, q) is defined
by a formula (2.1) with at most q operations ∩, ∪ and fewnomials Pij of complexity
at most m. The set X is restricted if it is bounded and all points of its closure are
regular for all fewnomials Pij . If Pij in the formula for X are fewnomials with
division, we say that division is permitted.

The complexity of fewnomials (and fewnomials with division) is closely related
to their Pfaffian complexity. The Bezout-Khovanskii theorem implies that the num-
ber of isolated real zeros of a system of n fewnomial equations (with division) of
complexity m in n variables is bounded by a certain explicit function of (n,m).

For an integer d > 1, consider a set Xd ⊂ R3 defined by the following two
equations:

td − xt+ 1 = 0,(2.2)

(y − t)d − x(y − t) + 1 = 0.(2.3)

The complexities of fewnomials in these equations are 2 and 3, independent of d.
Let Yd be projection of Xd to R2:

Yd = {(x, y) ∈ R2, ∃t ∈ R, (x, y, t) ∈ Xd}.(2.4)

Theorem 2.5. The set Yd in (2.4) cannot be defined by a quantifier-free formula
(2.1) with fewnomials of the complexity independent of d, even if division is per-
mitted.

Proof. For a fixed real x, a point (x, y) belongs to Yd when y is the sum of two real
solutions, not necessarily distinct, to (2.2) considered as an equation on t.

Consider the complexification CYd of Yd:

CYd = {(x, y) ∈ C2, ∃t ∈ C, td − xt = −1, (y − t)d − x(y − t) = −1},(2.5)

i.e., the set of complex values (x, y) for which (2.2) and (2.3), considered as equa-
tions on t, have a common complex solution.

Let t = t(x) be a d-valued algebraic function of x ∈ C defined by (2.2). It is
ramified at d points xk = x0e

2kπi/d where x0 = d/(d − 1)(d−1)/d is real positive.
The values of t(0) are tk = e(2k−1)πi/d, for k = 0, . . . , d− 1. The monodromy group
of t(x) is the permutation group Sd. To see this, one observes that, as x moves
along the real axis from 0 towards the ramification point x0, makes a small loop
about x0, and comes back to 0 along the real axis, the two values t0 and t1 of t(0)
are permuted (see the proof of Theorem 3.2 for a more detailed argument). Since
(2.2) is invariant under

x 7→ e−2πi/dx, t 7→ e2πi/dt,(2.6)
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the values tk−1 and tk of t(0) are permuted as x moves from 0 towards x−k, makes
a small loop, and returns to 0. These permutations generate Sd.

Substituting t = t(x) into (2.3), we define d(d + 1)/2-valued function y(x) with
yij(x) = ti(x) + tj(x), for 0 ≤ i ≤ j < d. Here ti(x) are the values of the function
t(x). The monodromy group action on the values yij of y(x) has two invariant
subsets: i = j, of size d, corresponding to the subset {(y/2)d − xy/2 = −1} of
CYd, and i 6= j, of size d(d− 1)/2, corresponding to an irreducible algebraic curve
CY ′d ⊂ CYd. For a small real c, the set CY ′d ∩ {x = c} contains [d/2] real points,
the sums of pairs of complex conjugate roots of (2.2).

Note that Y ′d = CY ′d∩R2 is one-dimensional since, for real x > x0, equation (2.2)
has at least two real solutions. Any quantifier-free semialgebraic formula defining
Yd, even if division is permitted, should contain a nonzero rational function P (x, y)
vanishing on a one-dimensional subset of Y ′d . Since CY ′d is irreducible, P should
vanish identically on CY ′d . Hence the set {P = 0, x = c}, for a generic small real
c, should contain at least [d/2] isolated real points. Bezout-Khovanskii theorem
implies that P cannot be a fewnomial with division of the complexity independent
of d. �

The set Xd defined by (2.2) and (2.3) is not restricted, but Xd,c = Xd∩{|x| ≤ c}
is a restricted fewnomial set. For any real x > x0, equation (2.2) has at least
two real solutions. Note that x0 ≤ 2 for all d. In particular, Y ′d ∩ {|x| ≤ 3} is a
nonempty one-dimensional set. Here Y ′d is the set defined in the proof of Theorem
2.5. The arguments in the proof of Theorem 2.5 can be repeated to prove the
following statement.

Corollary 2.6. The set Yd,3 = Yd∩{|x| ≤ 3}, a projection of a restricted fewnomial
semialgebraic set Xd∩{|x| ≤ 3}, cannot be defined by a quantifier-free formula (2.1)
with fewnomials of the complexity independent of d, even if division is permitted.

Consider the cone Wd over the set Xd,3:

Wd = {0 < z ≤ 1} ∩ {|x| ≤ 3}(2.7)

∩{td − xtzd−1 + zd = 0, (yz − t)d − x(yz − t)zd−1 + zd = 0}.

A point (x, y, z, t) ∈ R4 belongs to Wd if 0 < z ≤ 1 and (x, y, t/z) ∈ Xd,3. The
set Wd is fewnomial semialgebraic, with the complexity independent of d. It is not
restricted, since the points of its frontier

∂Wd = W̄d \Wd = {z = t = 0, (x, y) ∈ Yd,3}

are not regular for the fewnomials in (2.7). Note that ∂Wd is the Hausdorff limit
at z = 0 of the family of restricted fewnomial sets Wd ∩{z = const}. The following
statement follows immediately from Theorem 2.5.

Corollary 2.7. The set ∂Wd, the frontier of a fewnomial semialgebraic set Wd and
the Hausdorff limit of the family of restricted fewnomial semialgebraic sets Wd∩{z =
const}, cannot be defined by a quantifier-free formula (2.1) with fewnomials of the
complexity independent of d, even if division is permitted.

Note that there is an upper bound on the topological complexity of the Hausdorff
limit of a family of restricted semi-Pfaffian, in particular, fewnomial semialgebraic
sets of bounded complexity (Zell [19]).
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3. Counter-examples for exponential expressions

Definition 3.1. An exponential algebraic function is a function constructed from
the constants and independent variables with additions, multiplications, and expo-
nentiations. An exponential semialgebraic set X is defined by a formula (2.1) with
exponential algebraic functions Pij. An exponential algebraic function with division
is constructed from constants and independent variables with additions, multiplica-
tions, divisions, and exponentiations.

The set X is restricted if it is bounded, all points of its closure are regular for
all fewnomials in its formula, and the values of all exponentials in its formula can
be separated from 0 and ∞.

An exponential algebraic function (also with division) is a Pfaffian function.
Bezout-Khovanskii theorem implies that the number of isolated real zeros of a
system of equations with exponential algebraic functions is finite, bounded by a
certain explicit function of the number of variables and the complexities of the
functions.

We give here an example of a curve in R5 defined by an exponential algebraic
equations and inequalities, such that its proper projection to R2 cannot be defined
by a quantifier-free formula with exponential algebraic functions with division. A
different approach to impossibility of exponential quantifier elimination was sug-
gested in [11].

Assuming 0 < t < y, one can consider a set X+
d ⊂ R3 defined by (2.2) and (2.3)

for any real number d:

td − xt+ 1 = 0, t > 0,(3.1)

(y − t)d − x(y − t) + 1 = 0, y > t.(3.2)

Let Y +
d be projection of X+

d to R2:

Y +
d = {(x, y) ∈ R2, ∃t ∈ R, (x, y, t) ∈ X+

d }.(3.3)

Introducing new variables u = log(t) and v = log(y − t), one can represent Y +
d

as a proper projection of a set Zd ⊂ R5 defined by a system of equations with
exponential algebraic functions:

exp(u)− t = 0, exp(du)− xt+ 1 = 0,(3.4)

exp(v)− y + t = 0, exp(dv) − x(y − t) + 1 = 0.(3.5)

Theorem 3.2. The set Y +
d in (3.3) cannot be defined by a quantifier-free formula

with exponential algebraic functions, even if division is permitted.

Proof. For a fixed real x, a point (x, y) belongs to Y +
d when y is the sum of two

real positive solutions, not necessarily distinct, to (3.1) considered as an equation
on t. For d > 1 and x > x0 = d/(d − 1)(d−1)/d, equations (3.1) and (3.2) have
two distinct real positive solutions, t0(x) and t1(x), hence Y +

d contains a one-
dimensional semianalytic curve Y ′d , the graph of the function y(x) = t0(x) + t1(x).
We want to define an irreducible complex analytic curve CY ′d ⊂ C2 by analytic
continuation of y(x).

We start with a multivalued ramified analytic function t(x) for x ∈ C obtained
as an analytic continuation of t0(x). Although td is a multivalued function with
ramification at t = 0 and t = ∞, we can always choose its branch uniquely since,
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for bounded complex values of x, solutions to (3.1) are bounded and separated from
t = 0. At x = x0, we have t0(x0) = t1(x0) = 1/(d − 1)1/d. As x makes a loop
about x0, the two solutions t0(x) and t1(x) are exchanged. Hence they represent
two branches of the same multivalued function t(x). As x passes through x0 and
continues towards 0 along the real axis, the two branches of t(s) passing through
t(x0) = 1/(d−1)1/d become the two values e±πi/d of t(0). This can be easily verified
for d = 2 and extended to all d > 1 by continuity.

Let us fix an irrational value of d. Since (3.1) is invariant under the transfor-
mation (2.6), and the value t0 = e−πi/d of t(0) maps to its value t1 = eπi/d under
that transformation, the function t(x) is invariant under (2.6). As x moves along
the real axis from 0 towards x0, makes a small loop about x0, and comes back to 0
along the real axis, the values t0 and t1 of t(0) are permuted. If the loop is small
enough, the only other permuted values of t(0) are tm = e(2m−1)πi/d with |m| large.
Since t(x) is invariant under (2.6), the same is true for the values tk−1 and tk of
t(0), for any k. This implies that, for any finite permutation σ of the values of t(0),
acting as an identity on the values tk with |k| > k(σ), and any k0 ≥ k(σ), there is
an element of the monodromy group of t(x) that acts as σ on all values tk of t(0)
for |k| ≤ k0. This implies that, for any x and any two distinct values t′ and t′′ of
t(x), there is a value t′+ t′′ of y(x). In particular, for a generic real x, the function
y(x) has infinitely many real values, the sums of pairs of complex conjugate values
of t(x). Hence, for an irrational d and a generic real c, the set CY ′d ∩ {x = c} has
infinitely many real points.

Any quantifier-free formula (2.1) with exponential algebraic functions defining
Y +
d , even if division is permitted, should contain a nonzero exponentional algebraic

function with division P (x, y) vanishing on a one-dimensional subset of Y ′d . Since
CY ′d is irreducible, P should vanish identically on CY ′d . Hence the set {P = 0, x =
c}, for a generic real c, should contain infinitely many isolated real points, which
contradicts the Bezout-Khovanskii theorem. �

The set Zd defined by (3.4) and (3.5) is not restricted, but Zd,c = Zd ∩{|x| ≤ c}
is a restricted exponential semialgebraic set. For any real x > x0, equation (3.1) has
at least two real solutions. Note that x0 ≤ 2 for all d. In particular, Y ′d ∩ {|x| ≤ 3}
is a nonempty one-dimensional set. Here Y ′d is the subset of Y +

d defined in the proof
of Theorem 3.2. The arguments in the proof of Theorem 3.2 can be repeated to
prove the following statement.

Corollary 3.3. The set Y +
d ∩ {|x| ≤ 3}, a projection of a restricted exponential

semialgebraic set Zd∩{|x| ≤ 3}, cannot be defined by a quantifier-free formula (2.1)
with exponential algebraic functions, even if division is permitted.

Consider the cone Vd over the set Zd,3.

Vd = {0 < z ≤ 1, (x, y, z, u, v, t) ∈ R6, (x, y, u/z, v/z, t/z) ∈ Zd,3}.(3.6)

The set Vd is exponential semialgebraic with division. It is not restricted, since its
frontier

∂Vd = V̄d \ Vd = {z = u = v = t = 0, (x, y) ∈ Y +
d } ∩ {|x| ≤ 3}

contains points that are not regular. Note that ∂Vd can be considered as the
Hausdorff limit of a family of restricted exponential semialgebraic sets Vd ∩ {z =
const} as z ↘ 0. The following statement follows immediately from Theorem 3.2.
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Corollary 3.4. The set ∂Vd, the frontier of an exponential semialgebraic set with
division Vd and the Hausdorff limit of a family of restricted exponential semialge-
braic sets Vd∩{z = const}, cannot be defined by a quantifier-free formula (2.1) with
exponential algebraic functions, even if division is permitted.
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