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Abstract. We consider linear systems with m inputs, p outputs, and McMillan degree n such
that n = mp. If both m and p are even, we show that there is a nonempty open (in the usual
topology) subset U of such systems, where the real pole placement map is not surjective. It follows
that, for each system in U , there exists an open set of pole configurations, symmetric with respect
to the real line, which cannot be assigned by any real static output feedback.
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1. Introduction. We consider linear systems S = (A,B,C) described by the
equations

ẋ = Ax+Bu,
y = Cx.

(1.1)

Here the state x, the input u, and the output y are functions of a real variable t
(time), with values in Rn, Rm, and Rp, respectively, the dot denotes the derivative
with respect to t, and A,B,C are real matrices of sizes n × n, n × m, and p × n,
respectively.

Assuming zero initial conditions and applying the Laplace transform, we obtain

Y (s) = C(sI −A)−1B U(s),

so the behavior of our linear system is described by a rational matrix-function C(sI−
A)−1B of size p×m of a complex variable s, which is called the (open loop) transfer
function of S. It is clear that G(∞) = 0. The poles of the transfer function are the
eigenvalues of the matrix A.

For a given p × m matrix function G with the property G(∞) = 0, there exist
infinitely many representations of G in the form G(s) = C(sI −A)−1B. The smallest
integer n over all such representations is called the McMillan degree of G.

We consider the possibility of controlling a given system S by attaching a feed-
back. This means that the output is sent to the input after a preliminary linear
transformation, called a compensator. The compensator may be another system of
the form (1.1) (dynamic output feedback) or just a constant matrix (static output
feedback). In this paper, we consider only static output feedback, referring for the
recent results on dynamic output feedback to [14, 11].

A static output feedback is described by the equation

u = Ky,(1.2)
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where K is an m× p matrix which is usually called a gain matrix. Eliminating u and
y gives

ẋ = (A+BKC)x,

whose characteristic polynomial is

ϕK(s) = det(sI −A−BKC).(1.3)

It is called the closed loop characteristic polynomial.

The pole placement problem is formulated as follows.

Given a system S = (A,B,C) and a set of points {s1, . . . , sn} in C (listed with
multiplicities) symmetric with respect to the real axis, find a real matrix K such that
the zeros of ϕK are exactly s1, . . . , sn.

For a fixed system S, we define the (real) pole placement map

χS : MatR(m× p) → PolyR(n), χS(K) = ϕK ,(1.4)

where MatR(m × p) is the set of all real matrices of size m × p, PolyR(n) is the set
of all real monic polynomials of degree n, and the polynomial ϕK is defined in (1.3).
Thus to say that, for a system S, an arbitrary symmetric set of poles can be assigned
by a real gain matrix is the same as saying that the real pole placement map χS is
surjective. Extending the domain to complex matrices K and the range to complex
monic polynomials gives the complex pole placement map

MatC(m× p) → PolyC(n),

defined by the same formula as the real one.

It is easy to see that, for every m,n, p, there are systems for which the pole place-
ment map is not surjective. For example, one can take B = 0 or C = 0. A necessary
condition of surjectivity proved in [13] is that S is observable and controllable. This
is equivalent to saying that the McMillan degree of the transfer function is equal to
n, the dimension of the state space. Notice that this property is generic: it holds for
an open dense subset of the set

A = MatR(n× n)×MatR(n×m)×MatR(p× n)

of all triples (A,B,C). All topological terms in this paper refer to the usual topology.

In this paper, we consider the following problem: for a given triple of integers
(m,n, p), does there exist an open dense subset V ⊂ A such that the real pole placement
map χS is surjective for S ∈ V ? If this is the case, we say that the real pole placement
map is generically surjective for these m,n, and p.

We briefly recall the history of the problem, referring to a comprehensive survey
[2]. The pole placement map defined by (1.3) and (1.4) is a regular map of affine
algebraic varieties. Comparing the dimensions of its domain and range, we conclude
that n ≤ mp is a necessary condition for generic surjectivity of the pole placement
map, real or complex. In the complex case, this condition is also sufficient [7]. To
show this, one extends the pole placement map to a regular map between compact
algebraic manifolds and verifies that its Jacobi matrix is of full rank. In the case when
n = mp, we have the following precise result.
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Theorem A (see [1]). For n = mp, the complex pole placement map is generically
surjective. Moreover, it extends to a finite regular map between projective varieties
and has degree

d(m, p) =
1!2! . . . (p− 1)! (mp)!

m!(m+ 1)! . . . (m+ p− 1)!
.

It follows that, for a generic system (A,B,C) with n = mp and a generic monic
complex polynomial ϕ of degree mp, there are d(m, p) complex matrices K such that
ϕK = ϕ.

The numbers d(m, p) occur as the solution of the following problem of enumer-
ative geometry: how many m-subspaces intersect mp given p-subspaces in Cm+p in
a general position? The answer d(m, p) was obtained by Schubert in 1886 (see, for
example, [9]).

The real pole placement map is harder to study. For a survey of early results, we
refer to [2, 12]. Wang [16] proved that n < mp is sufficient for generic surjectivity of a
real (or complex) pole placement map. A simplified proof of this result can be found
in [17, 12].

From now on, we discuss only the so-called critical case; that is, we assume that

n = mp

in the rest of the paper. In addition, we may assume, without loss of generality, that
p ≤ m, in view of the symmetry of our problem with respect to the interchange of m
and p (see, for example, [15, Theorem 3.3]).

One corollary from Theorem A is that the real pole placement map is generically
surjective if d(m, p) is odd. This number is odd if and only if one of the following
conditions is satisfied [2]: (a) min{m, p} = 1 or (b) min{m, p} = 2, and max{m, p}+1
is an integral power of 2.

In the opposite direction, Willems and Hesselink [18] found by explicit computa-
tion that the real pole placement map is not generically surjective for (m, p) = (2, 2).
A closely related fact, that the problem of enumerative geometry mentioned above
may have no real solutions for the case (m, p) = (2, 2), even when the given 2-subspaces
are real, is mentioned in [8].

In [13], Rosenthal and Sottile found with a rigorous computer-assisted proof that
the real pole placement map is not generically surjective in the case (m, p) = (4, 2),
thus disproving a conjecture of Kim that (2, 2) is the only exceptional case.

In [6], we showed that the real pole placement map is not generically surjective
when p = 2 and m is even, thus extending the negative results for the cases (2, 2) and
(4, 2) stated above.

In the present paper, we extend this result to all cases when both m and p are
even.

Theorem 1.1. If n = mp and m and p are both even, then the real pole placement
map is not generically surjective.

Our proof of Theorem 1.1 explicitly gives a system S0 ∈ A and a polynomial
element u(s) = s(s2 + 1)mp/2−1 such that, for any S′ in a neighborhood of S0, the
real pole placement map χS′ omits a neighborhood of u.

Our proofs in [6] depend on a hard analytic result from [5], related to the so-called
B. and M. Shapiro conjecture, which is stated below in section 2. The proofs in the
present paper are new, even in the case min{m, p} = 2, and they are elementary.

We conclude the introduction with an unsolved problem.
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A system S is called stabilizable (by real static output feedback) if there exists
a gain matrix K ∈ MatR(m × p) such that all zeros of the closed loop characteris-
tic polynomial ϕK belong to the left half-plane. From the positive results on pole
placement stated above, it follows that generic systems with m inputs, p outputs, and
state of dimension n are stabilizable if n < mp or if n = mp and m + p is odd. We
ask whether generic systems with n = mp and even m and p are stabilizable. The
answer is known to be negative in the case (m, p) = (2, 2) [3]. For complex output
feedback, with static or dynamic compensators, the problem of generic stabilizability
was solved in [10].

2. A class of linear systems. We begin with a well-known transformation of
the closed loop characteristic polynomial (1.3). The open loop transfer function of
a system of McMillan degree n, equal to the dimension of the state space, can be
factorized as

C(sI −A)−1B = D(s)−1N(s), detD(s) = det(sI −A),(2.1)

where D and N are polynomial matrix-functions of sizes p×p and p×m, respectively.
For the possibility of such factorization for systems (1.1) of McMillan degree n, we
refer to [4, Assertion 22.6]. Using (2.1) and the identity det(I − PQ) = det(I −QP ),
which is true for all rectangular matrices of appropriate dimensions, we write

ϕK(s) = det(sI −A−BKC) = det(sI −A) det(I − (sI −A)−1BKC)

= det(sI −A) det(I − C(sI −A)−1BK)

= detD(s) det(I −D(s)−1N(s)K) = det(D(s)−N(s)K).

This can be rewritten as

ϕK(s) = det

(
[D(s), N(s)]

[
I

−K

])
.(2.2)

Now we extend χS : K 
→ ϕK to a map between compact manifolds. For this purpose,
we allow an arbitrary (m+ p)× p complex matrix L of rank p in (2.2) instead of[

I
−K

]
,(2.3)

and we define

ϕL(s) = det ([D(s), N(s)] L) .(2.4)

A system S represented by [D(s), N(s)] is called nondegenerate if ϕL �= 0 for every
(m + p) × p matrix L of rank p. Such matrices are called equivalent; L1 ∼ L2 if
L1 = L2U , where U ∈ GLp(C). The set of equivalence classes is the Grassmannian
GC(p,m + p), which is a compact algebraic manifold of dimension mp. If L1 ∼ L2,
we have ϕL1 = cϕL2 , where c �= 0 is a constant. The space of all nonzero polynomials
of degree at most mp, modulo proportionality, is identified with the projective space
CPmp, coefficients of the polynomials serving as homogeneous coordinates. Monic
polynomials represent the points of an open dense subset of CPmp, a so-called big cell,
which consists of polynomials of degree mp. This construction extends the complex
pole placement map of a nondegenerate system to a regular map of compact algebraic
manifolds

χS : GC(p,m+ p) → CPmp,(2.5)
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where χS(L) is the proportionality class of the polynomial ϕL in (2.4), and L is a
matrix of rank p representing a point in GC(p,m+p). The set B of all nondegenerate
systems is open and dense in the set A of all systems, and the map

X ×GC(p,m+ p) → CPmp, (S,L) 
→ χS(L)(2.6)

is continuous. Notice that the subset of GR(p,m+ p) consisting of points which can
be represented by matrices L of the form (2.3) is open and dense. It corresponds via
χS to the big cell in CPmp consisting of polynomials of degree mp.

We consider a system S0 = (A0, B0, C0) represented by the polynomial matrix
[D(s), N(s)]

=




1 s . . . sm+p−2 sm+p−1

0 1 . . . (m+ p− 2)sm+p−3 (m+ p− 1)sm+p−2

. . . . . . . . . . . . . . .
0 0 . . . . . . (m+ 1) . . . (m+ p− 1)sm


 .(2.7)

The first row of [D(s), N(s)] consists of monic monomials, and the kth row is the
(k − 1)st derivative of the first for 2 ≤ k ≤ p. This system S0 has McMillan degree
mp, and the matrices A0, B0, C0 can be recovered from [D,N ] by [4, Theorem 22.18].
Let L = (ai,j). Introducing polynomials

fj(s) = a1,j + a2,js+ · · ·+ am+p−1,js
m+p−2 + am+p,js

m+p−1(2.8)

for 1 ≤ j ≤ p, we can write (2.4) as

ϕL = W (f1, . . . , fp) =

∣∣∣∣∣∣∣∣

f1 . . . fp
f ′
1 . . . f ′

p

. . . . . . . . .

f
(p−1)
1 . . . f

(p−1)
p

∣∣∣∣∣∣∣∣
.

Thus, for our system (A0, B0, C0), the pole placement map becomes the Wronski
map, which sends a p-vector of polynomials into their Wronski determinant. We
say that two p-vectors of polynomials are equivalent, (f1, . . . , fp) ∼ (g1, . . . , gp), if
(g1, . . . , gp) = (f1, . . . , fp)U , where U ∈ GLp(C). Equivalent p-vectors have propor-
tional Wronski determinants. Equivalence classes of p-vectors of linearly independent
polynomials of degree at most m+p−1 parametrize the Grassmannian GC(p,m+p).
A p-vector of complex polynomials will be called real if it is equivalent to a p-vector
of real polynomials. The system represented by (2.7) is nondegenerate. This is a
consequence of the well-known fact that the Wronski determinant of p polynomials is
zero if and only if the polynomials are linearly dependent.

To prove Theorem 1.1, we use the following general result (compare [13, Theorem
3.1]).

Proposition 2.1. If, for some (m,n, p), there exists a real nondegenerate system
S0 = (A0, B0, C0) such that the real pole placement map χS0 in (2.5) is not surjective,
then, for these (m,n, p), the real pole placement map is not generically surjective.

Indeed, if χS0 omits one point u, it omits a neighborhood of u, because the image
of a compact space under a continuous map is compact. Using continuity of the
map (2.6), we conclude that, for all S in a neighborhood of S0, the maps χS omit a
neighborhood of u.

In view of Proposition 2.1, to prove Theorem 1.1, it is enough to find a nonzero
real polynomial of degree at most mp which cannot be represented as the Wronski
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determinant of p real polynomials of degree at most m + p − 1. Thus Theorem 1.1
follows from Proposition 2.1 and the following proposition.

Proposition 2.2. If m ≥ p ≥ 2 are even integers, then the polynomial u(s) =
s(s2 + 1)mp/2−1 is not proportional to the Wronski determinant of any p real polyno-
mials of degree at most m+ p− 1.

Proposition 2.2 is motivated by a conjecture of B. and M. Shapiro (see, for ex-
ample, [15]), which says: If the Wronskian determinant of a polynomial p-vector has
only real roots, then this p-vector is real. In [5], we proved this conjecture for p = 2
and used this result in [6] to derive the case p = 2 of Theorem 1.1. In the present
paper, we prove a result, Proposition 3.1 in section 3, which is a very special case of
the B. and M. Shapiro conjecture, but it still permits us to derive Proposition 2.2.

3. The Wronski map. A p-vector of linearly independent polynomials of degree
at most m + p − 1 can be represented by an (m + p) × p matrix L of rank p, whose
columns are composed of the coefficients of the polynomials as in (2.8).

The group GLp(C) acts on such matrices by multiplication from the right. This
action is equivalent to the usual column operations on matrices: interchanging two
columns, multiplying a column by a nonzero constant, and adding to a column a
multiple of another column. For each column j of L, we introduce two integers
1 ≤ ej ≤ dj ≤ m + p, which are the positions of the first and last nonzero elements
of this column, counted from above. Thus deg fj = dj − 1, and the order of a root of
fj at zero is ej − 1. It is easy to see that, by column operations, every (m + p) × p
matrix L = (ai,j) of rank p can be reduced to the following canonical form:

(i) d1 > d2 > · · · > dp,
(ii) aej ,j = 1 for every j ∈ [1, p],
(iii) aek,j = 0 for 1 ≤ j < k ≤ p.
The elements aej ,j = 1, 1 ≤ j ≤ p, of the canonical form will be called the pivot

elements. It follows from (iii) that all numbers ej are distinct.
Proposition 3.1. Suppose that mp is even. Then every polynomial p-vector

(f1, . . . , fp) of degree at most m+ p− 1 in canonical form, which satisfies

W (f1, . . . , fp) = λw, where w(s) = smp/2+1 − smp/2−1, λ ∈ C∗,(3.1)

has only real entries.
Corollary. All polynomial p-vectors of degree at most m+p−1 satisfying (3.1)

are real.
This corollary confirms a special case of the B. and M. Shapiro conjecture, when

the Wronskian determinant of a polynomial p-vector is w(s) = smp/2+1 − smp/2−1,
which is a polynomial with real roots 0,±1.

The properties of the Wronskian determinants used here are well known and easy
to prove.

Lemma. The Wronski map (f1, . . . , fp) 
→ W (f1, . . . , fp) is linear with respect to
each fj, and

W (sn1 , . . . , snp) = V (n1, . . . , np)s
n1+···+np−p(p−1)/2,

where

V (n1, . . . , np) =
∏
k<j

(nj − nk)

is the Vandermonde determinant.
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Using this lemma, we compute the Wronskian determinant of a polynomial p-
vector in canonical form and conclude that

degW (f1, . . . , fp) = d1 + · · ·+ dp − p(p+ 1)/2(3.2)

and

ordW (f1, . . . , fp) = e1 + · · ·+ ep − p(p+ 1)/2,(3.3)

where ord denotes the multiplicity of a root at zero.
Proof of Proposition 3.1. According to (3.1), degw = mp/2 + 1, and ordw =

mp/2− 1. So (3.2) and (3.3) imply

d1 + · · ·+ dp = p(p+ 1)/2 +mp/2 + 1,

e1 + · · ·+ ep = p(p+ 1)/2 +mp/2− 1.

Subtracting the second equation from the first, we get
p∑

j=1

(dj − ej) = 2.

As all the summands are nonnegative, there are two possibilities.
Case 1. In all columns but one, all elements, except the pivot elements, are equal

to zero, and, for the exceptional column j, dj − ej = 2. Computing the Wronskian
and comparing it with (3.1), we obtain

V (. . . , ej − 1, . . . )smp/2−1

+ V (. . . , ej , . . . )aej+1,js
mp/2

+ V (. . . , ej + 1, . . . )aej+2,js
mp/2+1

= −λsmp/2−1 + λsmp/2+1.

Here and in what follows, the notation V (. . . , ej + m, . . . ) means the Vandermonde
determinant of p arguments, whose kth argument is ek − 1 for k �= j and whose jth
argument is ej +m.

Comparing the terms with smp/2−1, we conclude that λ is real. Comparing the
terms with smp/2+1, we conclude that V (. . . , ej +1, . . . ) �= 0, and thus aej+2,j is real.
Now we consider the middle term in the expansion of the Wronskian determinant.
If V (. . . , ej , . . . ) = 0, then ek = ej + 1 for some k. As dk = ek and dj = ej + 2,
we conclude that dk = dj − 1, so k > j by (i) in the definition of the canonical
form. Now (iii) from the definition of the canonical form implies that aej+1,j = 0. If
V (. . . , ej , . . . ) �= 0, we also conclude that aej+1,j = 0. Thus all entries of L are real.

Case 2. In all columns but two, all nonpivot elements are equal to zero, and
the two exceptional columns contain one extra nonzero element each. Let j < k be
the positions of the exceptional columns, and let a = aej+1,j and b = aek+1,k be
the nonzero, nonpivot elements of these columns. Computing the Wronskian and
comparing it with (3.1), we obtain

V (. . . , ej − 1, . . . )smp/2−1

+ (aV (. . . , ej , . . . ) + bV (. . . , ek, . . . )) s
mp/2

+ abV (. . . , ej , . . . , ek, . . . )s
mp/2+1

= −λsmp/2−1 + λsmp/2+1,

(3.4)
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where V (. . . , ej , . . . , ek . . . ) denotes the Vandermonde determinant of p arguments,
whose jth argument is ej and whose kth argument is ek, and, for all other indices
l /∈ {j, k}, the lth argument is el − 1.

Our first conclusions are

V (. . . , ej − 1, . . . ) = −λ(3.5)

and

V (. . . , ej , . . . , ek, . . . ) �= 0.(3.6)

It follows from (3.5) that λ is real. If exactly one of the numbers V (. . . , ej , . . . ) and
V (. . . , ek, . . . ) is zero, then (3.4) implies that at least one of the numbers a or b is zero.
Then the third term in the expansion of the Wronskian is zero, which contradicts (3.4).
If both V (. . . , ej , . . . ) and V (. . . , ek, . . . ) are zero, then V (. . . , ej , . . . , ek, . . . ) = 0,
and this contradicts (3.6). So both V (. . . , ej , . . . ) and V (. . . , ek, . . . ) are nonzero.
This means that there are no pivot elements in the rows ej + 1 and ek + 1. Us-
ing (3.6), we conclude that V (. . . , ej − 1, . . . ), V (. . . , ej , . . . ), V (. . . , ek, . . . ), and
V (. . . , ej , . . . , ek, . . . ) have the same sign, and, by (3.5), all these numbers have the
sign of −λ. As V (. . . , ej , . . . ) and V (. . . , ek, . . . ) are of the same sign, (3.4) implies
that a = −cb, where c > 0, and from the equations

V (. . . , ej , . . . , ek, . . . )ab = λ

and (3.5) we conclude that a and b are real.
The group Aut(CP1) of fractional-linear transformations acts on the space CPk

of proportionality classes of nonzero polynomials of degree at most k by the following
rule: Let

-(s) =
as+ b

cs+ d
, ad− bc �= 0,

represent a fractional-linear transformation. For a polynomial r(s), we put

-r(s) = (−cs+ a)kr ◦ -−1(s).

That this is indeed a group action can be verified as follows. The space of proportion-
ality classes of nonzero polynomials of degree at most k can be canonically identified
with the symmetric power Symk(CP1), which is the set of unordered k-tuples of
points in CP1. To each polynomial r, one puts into correspondence its roots, counted
with multiplicity, and the point ∞ with multiplicity k − deg r. Then the action of
- ∈ Aut(CP1) on such a k-tuple is simply

(s1, . . . , sk) 
→ (-(s1), . . . , -(sk)).

It is easy to verify that this action of Aut(CP1) extends to the space GC(p,m+p)
of equivalence classes of polynomial p-vectors of degree at mostm+p−1. Furthermore,
this extended action is respected by the Wronski map:

W (-g1, . . . , -gp) = -W (g1, . . . , gp).(3.7)

Of course, in the left-hand side of this equality, the group Aut(CP1) acts on
Symm+p−1(CP1), while, in the right-hand side, it acts on Symmp(CP1). Equation
(3.7) permits us to simplify the polynomial equation

W (g1, . . . , gp) = v, v(s) ∼ s(s2 − 1)mp/2−1,(3.8)
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which will be used to prove Proposition 2.2.
Consider the fractional-linear transformation

-(s) = -−1(s) =
1− s

1 + s
.(3.9)

We have - : (0, 1,∞,−1) 
→ (1, 0,−1,∞), and -(R) = R.
Using (3.8) and (3.9), we obtain

-v(s) = (s+ 1)mpv ◦ -−1(s) ∼ smp/2+1 − smp/2−1 = w(s),

where “∼” means “proportional.” Thus, with fj = -gj , (3.8) is equivalent to the
equation

W (f1, . . . , fp) = w, w(s) ∼ smp/2+1 − smp/2−1,(3.10)

which we solved in Proposition 3.1. The conclusion is that

all solutions of (3.8) in canonical form have real coefficients.(3.11)

Proof of Proposition 2.2. Suppose that (f1, . . . , fp) is a real polynomial p-vector
in canonical form satisfying

W (f1, . . . , fp) = u, u(s) = λs(s2 + 1)mp/2−1, λ �= 0.(3.12)

Then (3.3) implies

e1 + · · ·+ ep = 1 + p(p+ 1)/2.

As (ej)
p
j=1 are distinct positive integers, the only possibility is that

{e1, . . . , ep} = {1, 2 . . . , p− 1, p+ 1}.(3.13)

Similarly, (3.2) implies

d1 + · · ·+ dp = mp+ p(p+ 1)/2− 1.

As (dj)
p
j=1 are distinct integers in the interval [1,m+ p], the only possibility is that

{d1, . . . , dp} = {m,m+ 2,m+ 3, . . . ,m+ p}.(3.14)

Notice that the sequence (3.13) contains p/2 + 1 odd numbers and p/2 − 1 even
numbers. On the other hand, the sequence (3.14) contains p/2− 1 odd numbers and
p/2 + 1 even numbers. This implies that, at least for one j,

dj − ej is odd.(3.15)

This means that the polynomial fj contains both even and odd powers of s with
nonzero coefficients. So the polynomial gj(s) = fj(is), i =

√−1, is not proportional
to any polynomial with real coefficients. On the other hand, the polynomial p-tuple
(g1, . . . , gp), where gj(s) = εjfj(is) with appropriate εj ∈ {±1,±i}, is a solution of
(3.8) in canonical form, and we know from (3.11) that all such solutions have real
coefficients. This contradiction completes the proof of Proposition 2.2.
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