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Abstract. We present here basic results in Lipschitz Geometry of semialgebraic surface

germs. Although bi-Lipschitz classification problem of surface germs with respect to

the inner metric was solved long ago, classification with respect to the outer metric

remains an open problem. We review recent results related to the outer and ambient bi-

Lipschitz classification of surface germs. In particular, we explain why the outer Lipschitz

classification is much harder than the inner classification, and why the ambient Lipschitz

Geometry of surface germs is very different from their outer Lipschitz Geometry. In

particular, we show that the ambient Lipschitz Geometry of surface germs includes all

of the Knot Theory.

1. Introduction

Lipschitz classification of semialgebraic surfaces has become in recent years one of

the central questions of the Metric Geometry of Singularities. It was stimulated by the

finiteness theorems of Mostowski, Parusinski and Valette. (see [15, 16, 20]). They proved

that there are finitely many Lipschitz equivalence classes in any semialgebraic family

of semialgebraic sets. Lipschitz classification is intermediate between Smooth (too fine)

and Topological (too coarse) classifications. For example, smooth classification of most

singularities is not finite. It may be even infinite dimensional for non-isolated singularities.

Here we review recent developments in Lipschitz Geometry of semialgebraic surfaces

(two-dimensional real semialgebraic sets). Since we are mainly interested in singularities

of semialgebraic surfaces, our main object is a semialgebraic surface germ (X, 0) at the

origin of Rn. Note that most results presented in this paper remain true for subanalytic

sets, and for the sets definable in a polynomially bounded o-minimal structure.

A connected semialgebraic set X ⊂ Rn inherits from Rn two metrics: the outer metric

dist(x, y) = |y − x| and the inner metric idist(x, y) = length of the shortest path in

X connecting x and y. Note that dist(x, y) ≤ idist(x, y). A semialgebraic set is called

Lipschitz Normally Embedded if these two metrics are equivalent (see Definition 3.1).

For the surface germs, there are three natural equivalence relations:

1) Inner Lipschitz equivalence: (X, 0) ∼i (Y, 0) if there is a homeomorphism

h : (X, 0) → (Y, 0) bi-Lipschitz with respect to the inner metric.

2) Outer Lipschitz equivalence: (X, 0) ∼o (Y, 0) if there is a homeomorphism

h : (X, 0) → (Y, 0) bi-Lipschitz with respect to the outer metric.

3) Ambient Lipschitz equivalence: (X, 0) ∼a (Y, 0) if there is an orientation preserving

bi-Lipschitz homeomorphism H : (Rn, 0) → (Rn, 0) such that H(X) = Y .

Inner Lipschitz Geometry of surface germs is relatively simple. The building block of

the inner Lipschitz classification of surface germs is a β-Hölder triangle (see Definition

2.1). A surface germ (X, 0) with an isolated singularity is inner Lipschitz equivalent to

a β-horn (see Definition 2.2). If the singularity is not isolated, classification is made

by the theory of Hölder Complexes (see [1]). A Hölder Complex is a triangulation
1
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(decomposition into Hölder triangles) of a surface germ. Canonical Hölder Complex (see

Definition 2.9) is a complete invariant of the inner Lipschitz equivalence of surface germs.

For example, the germs of all irreducible complex curves are inner Lipschitz equivalent

to (C, 0), while the outer Lipschitz classification of the germs of complex plane curves is

described by their sets of essential Puiseux pairs (see [17], [12]). Even for the union of

two normally embedded Hölder triangles, the outer Lipschitz Geometry is not simple (see

[3]).

A special case of a surface germ is the union of a Hölder triangle T and a graph of a

Lipschitz semialgebraic function f defined on T . The outer Lipschitz equivalence of two

such surface germs is equivalent to the Lipschitz contact equivalence of the two functions.

This relates outer Lipschitz geometry of surface germs with the Lipschitz geometry of

functions. In [9] a complete invariant of the contact equivalence class of a Lipschitz func-

tion f defined on a Hölder triangle T , called a “pizza,” is defined. Informally, a pizza is a

decomposition of T into “slices,” Hölder sub-triangles {Ti} of T , such that the order of f

on each arc γ ⊂ Ti depends linearly on the order of contact of γ with a boundary arc of

Ti.

For the general surface germs, Lipschitz classification with respect to the outer metric

is still an open problem. The set of semialgebraic arcs in (X, 0) parameterized by the

distance to 0 is called the Valette link V (X) of the germ (X, 0) (see Definition 3.7). The

order of contact of the arcs (see Definition 3.10) defines a non-archimedean metric on

V (X).

The study of Lipschitz Normally Embedded, or simply Normally Embedded, sets was

initiated by Kurdyka and Orro [14]. Kurdyka proved that any semialgebraic set admits a

finite partition into normally embedded subsets. Using this partition, Kurdyka and Orro

proved that any semialgebraic sets admits a semialgebraic “pancake metric” equivalent

to the inner metric. Normal Embedding theorem of Birbrair and Mostowski states that,

for any semialgebraic set X , there is a semialgebraic and bi-Lipschitz with respect to the

inner metric embedding Ψ : X → Rm, where m ≥ 2 dim(X) + 1 (see [10]). Lipschitz

Normal Embedding of complex analytic sets is addressed in the paper by Anne Pichon in

the present volume.

A pancake decomposition is called minimal if it is not a refinement of another pancake

decomposition. A natural question related to Lipschitz Normal Embedding of surface

germs is uniqueness of a minimal pancake decomposition. The answer is negative even for

a Hölder triangle. Gabrielov and Sousa in [13] gave examples of Hölder triangles having

several combinatorially non-equivalent minimal pancake decompositions.

Relations between ambient and outer equivalence of surface germs were studied in [2, 5,

6]. In the paper [2] the authors presented several outer Lipschitz and ambient topologically

equivalent families of surface germs (Xi, 0), which were pairwise ambient Lipschitz non-

equivalent. In [5, 6], several “Universality Theorems” were formulated. Informally, these

theorems state that, even when the link of a surface germ is topologically a trivial knot,

ambient Lipschitz classification of such surface germs “contains all of the Knot Theory.”

2. Inner Lipschitz Equivalence

Definition 2.1. For 1 ≤ β ∈ Q, the standard β-Hölder triangle Tβ is the germ at the

origin of R2 of the surface {x ≥ 0, 0 ≤ y ≤ xβ} (see Figure 1a). A β-Hölder triangle is a

surface germ inner Lipschitz equivalent to Tβ.



LIPSCHITZ GEOMETRY OF SURFACES 3

x

y

y x=
ba) b)

Figure 1. A β-Hölder triangle and a β-horn.

Definition 2.2. For 1 ≤ β ∈ Q, the standard β-horn Cβ is the germ at the origin of R3

of the surface {z ≥ 0, x2 + y2 = z2β} (see Figure 1b). A β-horn is a surface germ inner

Lipschitz equivalent to Cβ.

Theorem 2.3. Given the germ (X, 0) of a semialgebraic surface with isolated singularity

and connected link, there is a unique rational number β ≥ 1 such that (X, 0) is inner

Lipschitz equivalent to the standard β-horn Cβ.

Birbrair’s theory of Hölder Complexes (see [1]) is a generalization of Theorem 2.3 for

the surface germs with non-isolated singularities.

Definition 2.4. A Formal Hölder Complex is a pair (G, β), where G is a graph and

β : EG → Q≥1 is a function, where EG the set of edges of G.

Definition 2.5. AGeometric Hölder Complex corresponding to a Formal Hölder Complex

(G, β) is a surface germ (X, 0) such that

1. For small ε > 0, the intersection of X with the ε-ball Bε is homeomorphic to the cone

over G, and the intersection of X with the ε-sphere Sε is homeomorphic to G.

2. For any edge g ∈ EG, the subgerm of (X, 0) corresponding to g is a β(g)-Hölder triangle.

Theorem 2.6. For any surface germ (X, 0) ⊂ Rn, there exists a Formal Hölder Complex

(G, β) such that (X, 0) is a Geometric Hölder Complex corresponding to (G, β).

Remark 2.7. For a given surface germ (X, 0), the Formal Hölder complex (G, β) in

Theorem 2.6 is not unique. The simplification procedure described below reduces it to the

unique Canonical Hölder Complex corresponding to (X, 0).

Definition 2.8. We say that a vertex v0 of the graph G is non-critical if it is adjacent to

exactly two edges g1 and g2 of G, and these edges connect v0 with two different vertices of

G. A vertex v0 of G is called a loop vertex if it is adjacent to exactly two different edges g1
and g2 of G, and these edges connect v0 with the same vertex v1 of G. The other vertices

of G (neither non-critical nor loop vertices) are called critical.

Definition 2.9. An Abstract Hölder Complex (G, β) is called Canonical, if

1. All vertices of G are either critical or loop vertices;

2. For any loop vertex v of G adjacent to the edges g1 and g2, one has β(g1) = β(g2).
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Figure 2. Simplification of Hölder complexes

Now we define a simplification procedure, reducing an Abstract Hölder Complex

(G, β) to a Canonical one.

We start with eliminating non-critical vertices. Let v0 be a non-critical vertex of G,

connected with the vertices v1 and v2 of G by the edges g1 and g2. Then we remove

the vertex v0 from V (G), and replace the edges g1 and g2 of G with the single edge g0
connecting v1 with v2. Let G

′ be the graph obtained from G by this operation. We define

an abstract Hölder complex (G′, β ′), setting β ′(g0) = min{β(g1), β(g2)} and β ′(g) = β(g)

on all edges g of G′ other than g0, which are also the edges of G. (see Figure 2a)

We repeat this operation until there are no non-critical vertices. After that, we take

care of the loop vertices of G.

Let (G, β) be an Abstract Hölder Complex without non-critical vertices. If a loop vertex

v0 of G is connected by the edges g1 and g2 with the same vertex v1, such that β(g1) 6=

β(g2), we define an Abstract Hölder Complex (G, β ′), replacing β1 = β(g1) and β2 = β(g2)

with β ′(g1) = β ′(g2) = min(β1, β2) (see Figure 2b). We repeat this operation for all loop

vertices of G.

The main results of the paper [1] are the following:

Theorem 2.10. (Inner Lipschitz Classification Theorem.) The surface-germs (X, 0)

and (X ′, 0) are Lipschitz equivalent with respect to the inner metric if, and only if, the

corresponding Canonical Hölder Complexes are combinatorially equivalent.

Theorem 2.11. (Realization Theorem.) Let (G, β) be an Abstract Hölder Complex.

Then there exists a surface germ (X, 0) which is a Geometric Hölder Complex correspond-

ing to (G, β).

Remark 2.12. The theory of Hölder Complexes implies that a germ (X, 0) of an irre-

ducible complex curve, considered as a real surface germ, is inner Lipschitz equivalent to

the germ (C, 0). Otherwise (X, 0) is inner Lipschitz equivalent to the union of finitely many

germs (C, 0) pinched at the origin, corresponding to irreducible components of (X, 0).



LIPSCHITZ GEOMETRY OF SURFACES 5

3. Normal Embedding Theorem, Lipschitz Normally Embedded Sets

Definition 3.1. A semialgebraic set X is called Lipschitz Normally Embedded (LNE) if

the inner and outer metrics on X are equivalent: dist(x, y) ≤ idist(x, y) ≤ C dist(x, y)

for some constant C > 0 and all x, y ∈ X .

For example, the germ of an algebraic curve {x3 = y2} is not LNE, while the standard

β-horn Cβ is LNE. A germ of an irreducible complex curve is LNE if, and only if, it is

smooth.

There are many examples of not normally embedded surface germs. On the other hand,

we have the following result:

Theorem 3.2. (See [7].) Let X ⊂ Rm be a connected semialgebraic set. Then there exist

a normally embedded semialgebraic set X̃ ⊂ Rq and an inner bi-Lipschitz homeomorphism

p : X → X̃. This map is called a normal embedding of X.

Definition 3.3. A subset X̃ ⊂ Rm is called Lipschitz Normally Embedded if there exist

a bi-Lipschitz homeomorphism Ψ : X̃inner → X̃outer.

Here X̃inner means the space X̃ equipped with the inner metric, and X̃outer means X̃

equipped with the outer metric. The difference with Definition 3.1 is that in Definition

3.3 we do not a priori suppose that Ψ is the identity map.

Proposition 3.4. The two definitions of Lipschitz Normally Embedding are equivalent.

Pancake Decomposition of Kurdyka implies that there exists a decomposition of any

semialgebraic set (X, 0) into LNE semialgebraic subsets.

Theorem 3.5. (See [14].) There is a decomposition of any semialgebraic set X into

subsets Xi such that :

1. Xi are semialgebraic LNE sets.

2. dim(Xi ∩Xj) < min(dimXi, dimXj) for i 6= j.

Remark 3.6. Using pancake decomposition, Kurdyka and Orro defined the so-called

pancake metric (see [14], [7]). It is a semialgebraic metric equivalent to the inner metric.

Definition 3.7. (See [19].) An arc in Rn is (a germ at the origin of) a mapping γ :

[0, ǫ) → Rn such that γ(0) = 0. Unless otherwise specified, arcs are parameterized by the

distance to the origin, i.e., |γ(t)| = t. We usually identify an arc γ with its image in Rn.

The Valette link of a surface germ (X, 0) is the set V (X) of all arcs γ ⊂ X .

Theorem 3.8. (See [19].) Let (X, 0) and (Y, 0) be germs of semialgebraic sets in Rn.

If these germs are semialgebraically (inner, outer or ambient) Lipschitz equivalent, then

there exists a bi-Lipschitz map h : X → Y (or h : Rn → Rn such that h(X) = Y in the

case of ambient equivalence) such that h(X ∩ Sε) = Y ∩ Sε for small ε > 0.

Definition 3.9. Let f 6≡ 0 be (a germ at the origin of) a Lipschitz function defined on

an arc γ. The order of f on γ is q = ordγf ∈ Q such that f(γ(t)) = ctq + o(tq) as t → 0,

where c 6= 0. If f ≡ 0 on γ, we set ordγf = ∞.

Definition 3.10. The tangency order of arcs γ and γ′ is tord(γ, γ′) = ordγ|γ(t) −

γ′(t)|. The tangency order of an arc γ and a set of arcs Z ⊂ V (X) is tord(γ, Z) =

supλ∈Z tord(γ, λ). The tangency order of two subsets Z and Z ′ of V (X) is tord(Z,Z ′) =
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supγ∈Z tord(γ, Z ′). Similarly, itord(γ, γ′), itord(γ, Z) and itord(Z,Z ′) are the tangency

orders with respect to the inner metric.

Remark 3.11. (See [4].) If (X, 0) is a germ of a semialgebraic curve, i.e., X = ∪γi is a

finite family of semialgebraic arcs, then the outer Lipschitz Geometry of (X, 0) is totaly

determined by the tangency orders {tord(γi, γj)}.

Proposition 3.12. A surface germ (X, 0) is LNE if, and only if, for any two arcs γ1, γ2
in X one has tord(γ1, γ2) = itord(γ1, γ2).

Proposition 3.13. Let (X, 0) ⊂ (Rn, 0) be a β-horn. The Grassmannian G(n, 2) can

be considered as the space of all orthogonal projections ρ : Rn → R2. Then there ex-

ist an open semialgebraic subset G̃ ⊂ G(n, 2) such that for all ρ ∈ G̃ one has β =

min{γ1,γ2}⊂V (X) tord(ρ(γ1), ρ(γ2)).

The following proposition was proved first by Alexandre Fernandes [12]. A special case

of this is the Arc Criterion of Normal Embedding [11].

Proposition 3.14. Let (X, 0) and (Y, 0) be surface germs. A semialgebraic homeomor-

phism Φ : (X, 0) → (Y, 0) preserving the distance to the origin is outer bi-Lipschitz if, and

only if, for any two arcs γ1, γ2 ∈ V (X) one has

(1) tord(γ1, γ2) = tord(Φ(γ1),Φ(γ2)).

A special case of Pancake Decomposition for surface germs can be stated as follows:

Theorem 3.15. Let (X, 0) be a surface germ. Then there exists a decomposition of (X, 0)

into the germs (Xi, 0) such that

1. Each (Xi, 0) is a LNE βi-Hölder triangle.

2. For i 6= j, the intersection (Xi, 0)∩(Xj, 0) is either the origin or a common boundary

arc of (Xi, 0) and (Xj, 0).

Definition 3.16. A pancake decomposition of a surface germ is minimal if the union of

any two adjacent Hölder triangles Xi and Xj is not normally embedded. Two pancake

decompositions are combinatorially equivalent if they are combinatorially equivalent as

Hölder Complexes.

The answer to a natural question “Are any two minimal pancake decompositions of the

same surface germ combinatorially equivalent?” is negative (see Section 5).

4. Pizza Decomposition of the Germ of a Semialgebraic Function

This section is related to the outer Lipschitz Geometry of a special kind of a surface

germ: The union of a LNE Hölder triangle and the graph of a semialgebraic Lipschitz

function defined on it.

Definition 4.1. For a semialgebraic Lipschitz function f defined on a β-Hölder triangle

T , let

(2) Qf(T ) =
⋃

γ∈V (T )

ordγf.

It was shown in [9] that Qf(T ) is either a point or a closed interval in Q ∪ {∞}.
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Definition 4.2. A Hölder triangle T is elementary with respect to a Lipschitz function

f if, for any q ∈ Qf(T ) and any two arcs γ and γ′ in T such that ordγf = ordγ′f = q, the

order of f is q on any arc in the Hölder triangle T (γ, γ′) ⊆ T bounded by the arcs γ and

γ′.

Definition 4.3. Let T be a Hölder triangle and f a Lipschitz function defined on T .

For each arc γ ⊂ T , the width µT (γ, f) of the arc γ with respect to f is the infimum

of exponents of Hölder triangles T ′ ⊂ T containing γ such that Qf (T
′) is a point. For

q ∈ Qf(T ) let µT,f(q) be the set of exponents µT (γ, f), where γ is any arc in T such that

ordγf = q. It was shown in [9] that, for each q ∈ Qf (T ), the set µT,f(q) is finite. This

defines a multivalued width function µT,f : Qf (T ) → Q ∪ {∞}. If T is elementary with

respect to f , then the function µT,f is single valued. When f is fixed, we write µT (γ) and

µT instead of µT (γ, f) and µT,f .

Definition 4.4. Let T be a Hölder triangle and f a semialgebraic Lipschitz function

defined on T . We say that T is a pizza slice associated with f if it is elementary with

respect to f and, unless Qf (T ) is a point, µT,f(q) = aq+ b is an affine function on Qf (T ).

If T is a pizza slice such that Qf (T ) is not a point, then the supporting arc γ̃ of T with

respect to f is the boundary arc of T such that µT (γ̃, f) = maxq∈Qf (T ) µT,f(q). In that

case, µT (γ, f) = tord(γ, γ̃) for any arc γ ⊂ T such that tord(γ, γ̃) ≤ µT (γ̃, f).

Definition 4.5. (See [9, Definition 2.13].) Let f be a non-negative semialgebraic Lipschitz

function defined on a β-Hölder triangle T = T (γ1, γ2) oriented from γ1 to γ2. A pizza on T

associated with f is a decomposition {Tℓ}
p
ℓ=1 of T into βℓ-Hölder triangles Tℓ = T (λℓ−1, λℓ)

ordered according to the orientation of T , such that λ0 = γ1 and λp = γ2 are the boundary

arcs of T , Tℓ ∩ Tℓ+1 = λℓ for 0 < ℓ < p, and each triangle Tℓ is a pizza slice associated

with f .

A pizza {Tℓ} on T is minimal if Tℓ−1 ∪ Tℓ is not a pizza slice for any ℓ > 1.

Definition 4.6. (See [9, Definition 2.12].) An abstract pizza is a finite ordered sequence

{qℓ}
p
ℓ=0, where qℓ ∈ Q≥1 ∪ {∞}, and a finite collection {βℓ, Qℓ, µℓ}

p
ℓ=1, where βℓ ∈ Q≥1 ∪

{∞}, Qℓ = [qℓ−1, qℓ] ⊂ Q≥1∪{∞} is either a point or a closed interval, µℓ : Qℓ → Q∪{∞}

is an affine function, non-constant when Qℓ is not a point, such that µℓ(q) ≤ q for all q ∈ Qℓ

and minq∈Qℓ
µℓ(q) = βℓ.

Definition 4.7. Two pizzas are combinatorially equivalent if the corresponding abstract

pizzas are the same.

Theorem 4.8. (See [9, Theorem 4.9].) Two non-negative semialgebraic Lipschitz func-

tions f and g defined on a Hölder triangle T are contact Lipschitz equivalent if, and only

if, minimal pizzas on T associated with f and g are combinatorially equivalent.

Let T = T (γ1, γ2) and T ′ = T (γ′
1, γ

′
2) be Normally Embedded β-Hölder triangles satis-

fying the condition :

(3) tord(γ1, T
′) = tord(γ1, γ

′
1) = tord(γ′

1, T ), tord(γ2, T
′) = tord(γ2, γ

′
2) = tord(γ′

2, T ).

For example, the triangles (T,Graph(f)) considered in this section satisfy this condi-

tion. The following question is natural. Let T = T (γ1, γ2) and T ′ = T (γ′
1, γ

′
2) be Normally

Embedded semialgebraic β-Hölder triangles satisfying (3). Is it true that the union T ∪T ′

is Lipschitz outer equivalent to the union T ∪Graph(f), where f is the distance function:

f(x) = dist(x, T ′)? In the paper [3] the authors show that it is not true.
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Figure 3. Two combinatorially non-equivalent minimal pancake decom-

positions of a snake. Black dots indicate the boundary arcs of pancakes.

5. Outer Lipschitz Geometry, Snakes

To formulate the results of this section, we need several definitions.

Definition 5.1. Let (X, 0) be a surface germ. An arc γ of X is Lipschitz non-singular

if there exists a Normally Embedded Hölder triangle T ⊂ X such that γ is an interior

arc of T and γ 6⊂ X \ T . Otherwise, γ is Lipschitz singular. It follows from the pancake

decomposition that a surface germ X contains finitely many Lipschitz singular arcs. The

union of all Lipschitz singular arcs in X is denoted by Lsing(X). A Hölder triangle T ⊂ X

is non-singular if all interior arcs of T are Lipschitz non-singular.

Definition 5.2. If T = T (γ1, γ2) is a non-singular β-Hölder triangle, an arc γ of T is

generic if itord(γ1, γ) = itord(γ, γ2) = β. The set of generic arcs of T is denoted G(T ).

Definition 5.3. An arc γ of a Lipschitz non-singular β-Hölder triangle T is abnormal

if there are two normally embedded Hölder triangles T ′ ⊂ T and T ′′ ⊂ T such that

T ′∩T ′′ = γ and T ∪T ′ is not normally embedded. Otherwise γ is normal. The set Abn(T )

of abnormal arcs of T is outer Lipschitz invariant.

Definition 5.4. A non-singular β-Hölder triangle T is called a β-snake if Abn(T ) = G(T ).

The following important property of snakes can be interpreted as “separation of scales”

in outer Lipschitz Geometry.

Lemma 5.5. Let T be a β-snake, and let {Tk}
p
k=1 be a minimal pancake decomposition

of T . Then each Tk is a β-Hölder triangle.

Remark 5.6. Minimal pancake decompositions of a snake may be combinatorially non-

equivalent, as shown in Figure 3. We use a planar plot to represent the link of a snake.

The points in Figure 3 correspond to arcs of the snake. The points with smaller Euclidean

distance inside the shaded disks correspond to arcs with the tangency order higher than

their inner tangency order β. Black dots indicate the boundary arcs of pancakes.

Definition 5.7. A β-Hölder triangle T is weakly normally embedded if, for any two arcs

γ and γ′ of T such that tord(γ, γ′) > itord(γ, γ′), we have itord(γ, γ′) = β.

Proposition 5.8. Let T be a β-snake. Then T is weakly normally embedded.

Weak Lipschitz equivalence of snakes is a combinatorial invariant [13, Subsection 6.3].
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6. Tangent Cones

Definition 6.1. The tangent cone C0X of a semialgebraic set X at 0 is defined as follows:

C0X = Cone

(
lim
ǫ→0

1

ǫ

(
X ∩ {|x| = ǫ}

))
,

where the limit here means the Hausdorff limit.

Remark 6.2. There are several equivalent definitions of the tangent cone of a semialge-

braic set. In particular, the tangent cone C0X can be defined as the set of tangent vectors

at the origin to all the arcs in X . The tangent cone of a semialgebraic set is semialgebraic.

The tangent cone is Lipschitz invariant:

Theorem 6.3. (See [18].) If two germs (X, 0) and (Y, 0) are outer (resp. ambient) Lip-

schitz equivalent, then the corresponding tangent cones C0X and C0Y are outer (resp.

ambient) Lipschitz equivalent.

The result is used Theory of Metric Knots (see [2],[5]) to prove Universality Theorem

below (see also [6],[5]). This result was also used to prove that a complex analytic set,

which is a Lipschitz submanifold of Cn,y is a smooth submanifold (See[8]). Moreover, the

result was used in the recent study of the Zariski Multiplicity Conjecture (see the paper

of Fernandes and Sampaio at the present volume).

7. Ambient Equivalence. Metric Knots.

Definition 7.1. Two germs of semialgebraic sets (X, 0) and (Y, 0) are outer Lipschitz

equivalent if there exists a homeomorphism H : (X, 0) → (Y, 0) bi-Lipschitz with respect

to the outer metric. The germs are semialgebraic outer Lipschitz equivalent if the map

H can be chosen to be semialgebraic. The germs are ambient Lipschitz equivalent if there

exists an orientation preserving bi-Lipschitz homeomorphism H̃ : (R4, 0) → (R4, 0), such

that H̃(X) = Y . The germs are semialgebraic ambient Lipschitz equivalent if the map H̃

can be chosen to be semialgebraic.

Definition 7.2. The link at the origin LX of a germ X is the equivalence class of the

sets X ∩ S3
0,ε for small positive ε with respect to the ambient Lipschitz equivalence. The

tangent link of X is the link at the origin of the tangent cone of X .

Remark 7.3. By the finiteness theorems of Mostowski, Parusinski and Valette (see [15],

[16] and [20]) the link at the origin is well defined. We write “the link at the origin”

speaking of this notion of the link from Singularity Theory, reserving the word “link” for

the notion of the link in Knot Theory. If X has an isolated singularity at the origin then

each connected component of LX is a knot in S3.

The following result (so called Universality Theorem) shows the difference between

outer and ambient Lipschitz Geometry of germs of real surfaces:

Theorem 7.4. (Universality Theorem.) Let K ⊂ S3 be a knot. Then one can associate

to K a semialgebraic surface germ (XK , 0) in R4 so that the following holds:

1) The link at the origin of each germ XK is a trivial knot;

2) All germs XK are outer Lipschitz equivalent;

3) Two germs XK1
and XK2

are ambient semialgebraic Lipschitz equivalent only if the

knots K1 and K2 are isotopic.
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Figure 4. The proof of Theorem 7.4.

To show how to proof works, we include the figure 4:

The figure 4, representing the link of the surface XK . A reader can find a detailed

explanation in [6].

The following result shows that for given tangent cone one can find infinitely many

Lipschitz outer equivalent, but not Lipschitz ambient equivalent, surface germs.

Theorem 7.5. For any two knots K and L there exists a semialgebraic surface germ

X̃KL such that:

1. For any knots K and L, the link at the origin of X̃KL is isotopic to L.

2. For any knots K and L, the tangent link of X̃KL is isotopic to K.

3. For fixed α and β, all surface germs X̃KL are outer bi-Lipschitz equivalent.
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