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Abstract. Let ξ be a polynomial vector field on Cn with coefficients of degree d and P be a
polynomial of degree p. We are interested in bounding the multiplicity of a zero of a restriction
of P to a non-singular trajectory of ξ, when P does not vanish identically on this trajectory.
Bounds doubly exponential in terms of n are already known ([9, 5, 10]). In this paper, we prove
that, when n = 3, there is a bound of the form p + 2p(p + d − 1)2. In Control Theory, such a
bound can be used to give an estimate of the degree of nonholonomy for a system of polynomial
vector fields (this degree expresses the level of Lie-bracketing needed to generate the tangent
space at each point).

1. Introduction. The problem of bounding the order of a polynomial along the
trajectory of a polynomial vector field comes from at least two different theories: Tran-
scendental Number Theory ([9]), and Control Theory ([5, 10]). Let us state it in a more
precise way:

Let ξ(x) be a vector field on Rn or Cn, with polynomial coordinates of degree not
greater than d, and such that ξ(O) 6= 0, P be a polynomial of degree p, γ the integral
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curve of ξ by O. Assuming that P|γ 6≡ 0, the problem is to bound the order of the power
series P|γ in terms of p, d, n.

A bound of the form 2n
22ndn

22npn has been obtained by Nesterenko ([9]). Indepen-

dently, Gabrielov ([5]) obtained a bound of the form d2n−2−1p2n−1(d+ p)2n−2

. These two
bounds are doubly exponential in terms of the dimension n, and probably far from being
optimal. In particular, all the examples we know are simply exponential in term of n.

Actually, since the writing of this paper, Gabrielov ([7]) found a bound simply expo-
nential in n and polynomial in d and p, namely

22n−1
n∑
k=1

[p+ (k − 1)(d− 1)]2n.

In the plane case (n = 2), a better bound of the form p(p+d−1)+1 is known ([4, 10]).

In this paper, we prove that when n = 3, there is also a better bound, of the form
p+ 2p(p+ d− 1)2. The proof uses the technique of estimation of multiplicities of Pfaffian
intersection developed in [6].

The content of the paper is as follows:

Section 2 gives facts from [6] about the multiplicity of deformation of an analytic
germ at O ∈ Cn defined by equations φ1 = . . . = φk = 0. This is meaningful, even if the
above intersection is not isolated. However, in this paper we need only the isolated case,
which is simpler that the general one, as explained in Section 2.

Section 3 contains the proof of the estimation, and an application to the degree of
nonholonomy is postponed to Section 4.

2. Multiplicities and deformations

2.1. Multiplicity. Let φ1(x), . . . , φn(x) be germs of analytic functions in (Cn, O). We
set Z(φ1, . . . , φn) for the analytic germ at O defined by the intersection {φ1 = . . .

. . . = φn = 0}. When this intersection is isolated, one has dimC
C{X1,...,Xn}

(φ1,...,φn) < +∞
and its multiplicity is defined as

e(φ1, . . . , φn) = dimC
C{X1, . . . , Xn}

(φ1, . . . , φn)
.(1)

Recall also that when φ1(x), . . . , φn(x) are polynomials of degrees q1, . . . , qn, we have
e(φ1, . . . , φn) ≤ q1 . . . qn by Bézout’s theorem.

R e m a r k 1. This definition of multiplicity can be used also in the following case (see
[3], p. 137). Let I be an ideal in the ring of the analytic functions in (Cn, O) such that
the local ring C{X1, . . . , Xn}/I is of dimension 1 and Cohen-Macaulay. For an analytic
function φ, when the intersection {I = 0} ∩ {φ = 0} is isolated, its multiplicity is

e(φ, I) = dimC
C{X1, . . . , Xn}

(φ, I)
.

This formula implies indeed (1): the ideal I = (φ1, . . . , φn−1) is a complete intersection
and so the ring C{X1, . . . , Xn}/(φ1, . . . , φn−1) is Cohen-Macaulay. We will use also this
formula when I is the ideal of a reduced curve. In this case C{X1, . . . , Xn}/I is a reduced
1-dimensional ring and therefore Cohen-Macaulay ([8], p. 187).
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Let us consider an ideal I = (φ1, . . . , φn−1) such that Γ defined as {φ1 = . . .
. . . = φn−1 = 0} is a 1-dimensional analytic germ in Cn. Γ =

⋃
Γj is the decompo-

sition of Γ into irreducible components and, for all j, we denote by Ij the prime ideal
associated to the component Γj . Let φ be an analytic function such that Z(φ, I) is an
isolated intersection. Then, from Remark 1, the multiplicity e(φ, Ij) is defined for all j.
If we denote by νj the multiplicity of the component Γj in Γ, we have (see [11], p. 84, 92)

e(φ, I) =
∑
j

νje(φ, Ij).(2)

Let τ = ϕ/η be a meromorphic function on Γj which is not identically zero. We can extend
ϕ and η to ϕ̂ and η̂, germs of analytic functions in (Cn, O). The intersections Γj∩{ϕ̂ = 0}
and Γj ∩ {η̂ = 0} are isolated and we define the multiplicity e(τ, Ij) = e(ϕ̂, Ij)− e(η̂, Ij).
Notice that this multiplicity does not depend on the extensions ϕ̂ and η̂ but only on the
functions on the curve ϕ and η.

If α and β are two 1-forms, the ratio α|Γj/β|Γj is a meromorphic function on Γj .
Thus the multiplicities e(α|Γj/β|Γj , Ij) can be defined as above. Following formula (2),
we denote the sum of these multiplicities by

e

(
α|Γ
β|Γ

, I

)
=
∑
j

νje

(
α|Γj
β|Γj

, Ij

)
.(3)

2.2. Multiplicity of deformation. If φ(x) is a germ of an analytic function in (Cn, O)

we call deformation a germ φ̃(x, ε) of an analytic function in (Cn+1, O) such that φ̃(x, 0) =

φ(x). We denote by φε(x) the function φ̃(x, ε) for ε fixed.

Let φ̃1(x, ε), . . . , φ̃n(x, ε) be deformations of the analytic functions φ1(x), . . . , φn(x).

We define the multiplicity of deformation #(φ̃1, . . . , φ̃n) of the ideal (φ̃1, . . .,φ̃n) as the
number of isolated zeroes of Z(φε1, . . . , φ

ε
n), ε 6= 0, counted with their multiplicities,

converging to the origin O when ε→ 0.

R e m a r k 2. If the functions φε1(x), . . . , φεn(x) are polynomial in x of degrees
q1, . . . , qn independent of ε and if the sets Z(φε1, . . . , φ

ε
n), for small ε 6= 0, are of di-

mension 0, then Bézout’s theorem can be applied to each one of these sets and we obtain

#(φ̃1, . . . , φ̃n) ≤ q1 · · · qn.

We will use the multiplicity of deformation in another case (definition introduced
in [6]). Let Γ be a reduced 2-dimensional analytic subspace of Cn+1 such that Γ∩{ε = 0}
is a curve without embedded components. Such a space Γ is called a deformation of
Γ0 = Γ ∩ {ε = 0}. We denote by Γε the intersection Γ ∩ {ε = const.} and by I the ideal
associated to Γ. Note that the spaces Γε are reduced, for small ε 6= 0, while Γ0 is not
necessarily reduced.

Let φ̃(x, ε) be a deformation of an analytic function φ. The multiplicity of the deforma-

tion, \(φ̃, I), is defined as the number of isolated zeroes, counted with their multiplicities,

of φ̃|Γε , ε 6= 0, converging to the origin O when ε → 0. Notice that, for this definition,

the deformation φ̃(x, ε) need not be defined on the whole space but only on Γ.

R e m a r k 3. The multiplicity #(φ̃1, . . . , φ̃n) depends in general on the deformations

φ̃i(x, ε). However if the intersection Z(φ1, . . . , φn) is isolated, this multiplicity depends

only on the germs φ1(x), . . . , φn(x) and we have #(φ̃1, . . . , φ̃n) = e(φ1, . . . , φn) (see for
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instance [1], p. 76). The same is true for the multiplicity \(φ̃, I). If the zeroes of φ̃|Γ0 are

isolated, then we have \(φ̃, I) = e(φ, I0) (I0 is the ideal associated to Γ0).

We would like to have a formula like (2) for the multiplicities of deformation. Such a
formula would rely the two definitions of multiplicity of deformation. For that, we need to
consider only a restricted class of deformations. Let us specify what are these restrictions.

Let φ̃1(x, ε), . . . , φ̃n−1(x, ε) and φ̃(x, ε) be deformations of the n analytic functions

φ1, . . . , φn−1 and φ. We say that the deformation (φ̃, φ̃1, . . . , φ̃n−1) is special (or that

(φ̃, Ĩ) is special, with Ĩ = (φ̃1, . . . , φ̃n−1)) if the following conditions are satisfied:

• the ideal I = (φ1, . . . , φn−1) defines a 1-dimensional analytic subspace Γ in Cn,

• the intersections Z(φε, φε1, . . . , φ
ε
n−1), for small ε 6= 0, are isolated.

In particular, if Z(φ, I) is isolated, any deformation (φ̃, Ĩ) is special.

Let us consider now a special deformation (φ̃, Ĩ). The multiplicity #(φ̃, Ĩ) is defined
and we denote by Γ the 1-dimensional analytic subspace defined by the ideal I. The set

Γ̃ defined as {φ̃1 = . . . = φ̃n−1 = 0} is a 2-dimensional analytic subspace in Cn+1. Let

Γ̃ =
⋃

Γj be the decomposition of Γ̃ into irreducible components and, for all j, Ij be the
prime ideal associated to the component Γj and µj be the multiplicity of the component

Γj in Γ̃ (see [11]). Each component Γj is a reduced 2-dimensional analytic subspace in
Cn+1 and the intersection Γj ∩ {ε = 0} is a curve without embedded components. Hence

the multiplicities \(φ̃, Ij) are defined.

Since the spaces Γεj are reduced, for small ε 6= 0, we have Γ̃ε =
⋃

Γεj . Moreover,
the second property of a special deformation implies that formula (2) can be applied
to each intersection Z(φε, . . . , φεn−1). Then, from the two definitions of multiplicity of
deformation, we have

#(φ̃, Ĩ) =
∑
j

µj\(φ̃, Ij).(4)

We are going now to extend the definition of the multiplicity #(φ̃, Ĩ) to meromorphic
functions. For that we will define the multiplicities on each component Γj and then use

formula (4) to define the multiplicity on Γ̃.

For a meromorphic function τ̃(x, ε) = ϕ̃(x, ε)/η̃(x, ε) on Γj , we set as above \(τ̃ , Ij) =
\(ϕ̃, Ij) − \(η̃, Ij). We have seen that these multiplicities exist although ϕ̃ and η̃ are
defined only on Γj .

If α is a 2-form, the restriction of α on the set of smooth points of Γj extends in a
unique way to a meromorphic form on Γj that we denote by α|Γj (this because Γj is

irreducible). If α and β are two 2-forms, the ratio α|Γj/β|Γj defines then unequivocally

a meromorphic function on Γj . Thus the multiplicities \(α|Γj/β|Γj , Ij) can be defined as

above. Following formula (4), we denote the sum of these multiplicities by

#

(
α|

Γ̃

β|
Γ̃

, Ĩ

)
=
∑
j

µj\

(
α|Γj
β|Γj

, Ij

)
.(5)

R e m a r k 4. From now on all deformations we consider are special. Then we will
use only the notation # for multiplicities of deformation.
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Finally, we will link the multiplicity of a ratio of 1-forms and the multiplicity of
deformation of a ratio of 2-forms.

Proposition 1. Let I = (φ1, . . . , φn−1) be an ideal defining a 1-dimensional ana-
lytic subspace Γ in Cn. Let φ and ψ be two analytic functions such that the multiplicity

e( dφ|Γdψ|Γ , I) is defined. Let φ̃, ψ̃ and Ĩ be deformations of φ, ψ and I. Then we have

e

(
dφ|Γ
dψ|Γ

, I

)
= #

(
(dφ̃ ∧ dε)|

Γ̃

(dψ̃ ∧ dε)|
Γ̃

, Ĩ

)
.

(Recall that the two sides of this equality are defined respectively by (3) and (5).)

P r o o f. We use the notation introduced above, i.e. Γi (resp. Γj) is an irreducible

component of Γ (resp. Γ̃) with a multiplicity νi (resp. µj). Moreover, if Γ0
j is the inter-

section Γj ∩ {ε = 0}, it is included in Γ (as a set). Therefore its irreducible components
are Γi with multiplicities ρi,j (maybe zero). The multiplicities νi, µj and ρi,j are related
by (see [11]) ∑

j

µjρi,j = νi.(6)

On each component Γj of Γ we consider the meromorphic function

τ̃j =
(dφ̃ ∧ dε)|Γj
(dψ̃ ∧ dε)|Γj

.

For each irreducible component Γi of Γ0
j , it can be shown (with the same arguments as

in Lemma 5 below) that

τ̃j |Γi =
dφ|Γi
dψ|Γi

.(7)

Since we have assumed that e( dφ|Γdψ|Γ , I) is defined, the zeroes of τ̃j |Γi are isolated. If we

write τ̃j = ϕ̃/η̃, then the zeroes of ϕ̃|Γi and η̃|Γi are isolated. Using Remark 3, this implies
#(ϕ̃, Ij) = e(ϕ, I0

j ) and #(η̃, Ij) = e(η, I0
j ), where ϕ (resp. η) denotes the restriction of

ϕ̃ (resp. η̃) to {ε = 0} and I0
j the ideal associated to Γ0

j . From formula (2) we have then

#(ϕ̃, Ij) =
∑
i

ρi,je(ϕ, Ii), #(η̃, Ij) =
∑
i

ρi,je(η, Ii).

But, by definition, #(τ̃j , Ij) = #(ϕ̃, Ij)−#(η̃, Ij), so we have

#
(
τ̃j , Ij

)
=
∑
i

ρi,je
(ϕ
η
, Ii

)
.

Since ϕ/η restricted to Γi is equal to τ̃j |Γi , formula (7) gives

#
(
τ̃j , Ij

)
=
∑
i

ρi,je

(
dφ|Γi
dψ|Γi

, Ii

)
.

By using definitions (5) and (3) with formula (6), we obtain finally

#

(
(dφ̃ ∧ dε)|

Γ̃

(dψ̃ ∧ dε)|
Γ̃

, Ĩ

)
=
∑
i,j

µjρi,je

(
dφ|Γi
dψ|Γi

, Ii

)
= e

(
dφ|Γ
dψ|Γ

, I

)
.
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2.3. Result for isolated intersections. We will now establish a preliminary result that
will be useful in the next section. This result is in fact a particular case of a theorem
proved by Gabrielov (see [6], Theorem 1.1). We give here a simplified proof for our case.

Lemma 2. Let I = (φ1, . . . , φn−1) be an ideal such that Γ defined as {φ1 = . . .
. . . = φn−1 = 0} is a 1-dimensional analytic subspace in Cn. Let φ and ψ be analytic
functions such that Z(φ, I) and Z(ψ, I) are isolated intersections. Then we have

e(φ, I) = e

(
ψ
dφ|Γ
dψ|Γ

, I

)
.

P r o o f. We first choose a system of coordinates (x1, . . . , xn) in a neighborhood of the
origin. Let Γ =

⋃
Γj be the decomposition of Γ into irreducible components.

Since Z(ψ, I) is isolated, for each component Γj there is an analytic parametrization
(Puiseux) such that {

ψ|Γj = tNj

xi|Γj = xi(t) i = 1, . . . , n

where xi(t) are analytic in t.
The function φ|Γj does not vanish identically since Z(φ, I) is isolated. Hence φ|Γj has

a Puiseux expansion at the origin:

φ|Γj = cjt
rj + o(trj ) = cjψ

rj
Nj + o(ψ

rj
Nj )(8)

where rj is a positive integer and cj 6= 0 a constant. If Ij is the ideal associated to Γj ,
the order of vanishing rj of φ|Γj is equal to e(φ, Ij) ([3], p. 8). From formula (2), we have
e(φ, I) =

∑
j νjrj .

Let us now differentiate the relation (8)

dφ|Γj = (cj
rj
Nj

ψ
rj
Nj
−1

+ o(ψ
rj
Nj
−1

))dψ|Γj .

We then have a Puiseux expansion for the function ψ
dφ|Γj
dψ|Γj

:

ψ
dφ|Γj
dψ|Γj

= cj
rj
Nj

ψ
rj
Nj + o(ψ

rj
Nj ) = cj

rj
Nj

trj + o(trj ).

Hence the functions φ|Γj and ψ
dφ|Γj
dψ|Γj

have expansions of the same order, that is e(φ, Ij) =

e(ψ
dφ|Γj
dψ|Γj

, Ij). From formula (2) and definition (3), we have

e

(
ψ
dφ|Γ
dψ|Γ

, I

)
= e(φ, I).

3. Multiplicity of a polynomial on the trajectory of a polynomial vector
field

Theorem 3. Let ξ(x) =
∑3
i=1Xi(x) ∂

∂xi
be a vector field on C3, with polynomial in x

coefficients Xi of degree not exceeding d and such that ξ(O) 6= 0. Let γ be the trajectory
of ξ through the origin.

Then, if P (x) is a polynomial of degree p such that P |γ 6≡ 0, the order µ of P |γ at the
origin satisfies

µ ≤ p+ 2p(p+ d− 1)2.(9)
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Example. Set ξ(x) = ∂
∂x1

+xd1
∂
∂x2

+xd2
∂
∂x3

and P (x) = xp3. Then it can be easily seen

that, in this case, µ = p(1+d+d2). This proves that the estimation (9) is asymptotically
optimal in terms of p and d when p ≤ d.

R e m a r k. Remind that in the case n = 2, there is a bound of the form p(p+d−1)+1
(cf. [4, 10]).

P r o o f o f T h e o r e m 3. Let P (x) be a polynomial of degree p with P |γ 6≡ 0. We
suppose P (O) = 0 (if P (O) 6= 0, the order µ is zero). Let us remark that the estimate (9)
for P1P2 follows from the estimates for P1 and P2. Then we may assume that P is an
irreducible polynomial.

The order of P |γ at the origin is also the multiplicity of the isolated intersection
γ ∩ {P = 0}. So we can use Lemma 2 to estimate µ. For that we need coordinates where
γ has a simple expression.

Proposition 4. Let l : C3 → C be a linear form such that the plane Σ = {l(x) = 0}
is transverse to the vector ξ(O) and A : Σ → C2 be an isomorphism. There exists an
analytic change of coordinates y = Φ(x) near the origin such that, if y = (y1, y2, z), we
have:

• ξ(y) = ∂
∂z ;

• z = l(x)u(x), where u is an analytic function with u(O) 6= 0;

• (y1|l(x)=0, y2|l(x)=0) = A(x) is an isomorphism.

P r o o f. Let us denote by ϕt(x) the flow of ξ(x). We consider the map Ψ defined in a
neighborhood of the origin by

Ψ(y1, y2, z) = ϕz(A
−1(y1, y2)).

It can be shown that the matrix of the mapping TOΨ is (A−1 | ξ(O)) (A−1 is a (3× 2)-
matrix and ξ(O) a column vector). The map TOΨ is an isomorphism because Σ, the plane
{l(x) = 0}, is transverse to ξ(O) and A−1 is an isomorphism from C2 to Σ. The rest of
the proof is classical in differential geometry: near the origin Ψ is a diffeomorphism and
by setting Φ = Ψ−1 we have the properties required in the proposition.

In the new coordinates y the trajectory γ is given by the equations {y1 = y2 = 0}
and we have to estimate the multiplicity µ = e(P (y), y1, y2). We want to apply Lemma 2
to the ideal I = (P (y), y2) (which defines a curve Γ) and the functions φ(y) = y1 and
ψ(y) = z. We can always choose the isomorphism A of Proposition 4 in such a way that
the hypothesis of the lemma are guaranteed. We have then

µ = e(φ, I) = e

(
ψ
dφ|Γ
dψ|Γ

, I

)
= e

(
z
dy1|Γ
dz|Γ

, I

)
.(10)

Lemma 5. Let (y1, . . . , yn) be coordinates on Cn, and Υ be an irreducible component
of the (n − 2)-dimensional subspace of Cn defined by {α = β = 0}, where the functions
α and β are analytic. Let ω and ω′ be analytic (n − 2)-forms over Cn such that, for all
y ∈ Υ, (ω′|Υ)y 6= 0.

Then there is an analytic function f such that, for y ∈ Υ, we have

f(y)
(ω|Υ)y
(ω′|Υ)y

=
(ω ∧ dα ∧ dβ)y

(dy1 ∧ . . . ∧ dyn)y
.
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P r o o f. For y ∈ Υ, we set r(y) =
(ω|Υ)y
(ω′|Υ)y

(this ratio is defined since (ω′|Υ)y 6= 0). Let y

be a smooth point of Υ and (v1, . . . , vn−2) be a basis of TyΥ. The restricted forms are given
by (ω|Υ)y(v1, . . . , vn−2) = ωy(v1, . . . , vn−2) and in the same way (ω′|Υ)y(v1, . . . , vn−2) =

ω′y(v1, . . . , vn−2) 6= 0. Thus we have r(y) =
ωy(v1,...,vn−2)
ω′y(v1,...,vn−2) .

Let us complete v1, . . . , vn−2 in a basis (v1, . . . , vn) of Cn. We want to evaluate the
n-forms (ω ∧ dα ∧ dβ)y and (ω′ ∧ dα ∧ dβ)y on this basis. Let us recall that, since Υ
is a component of the subspace {α = β = 0}, we have dαy(vi) = dβy(vi) = 0 for
i = 1, . . . , n− 2 and then:

(ω ∧ dα ∧ dβ)y(v1, . . . , vn) = ωy(v1, . . . , vn−2)(dα ∧ dβ)y(vn−1, vn)(11)

(ω′ ∧ dα ∧ dβ)y(v1, . . . , vn) = ω′y(v1, . . . , vn−2)(dα ∧ dβ)y(vn−1, vn).(12)

From the other hand, since α, β and the form ω′ are analytic in y = (y1, . . . , yn), we
have (ω′ ∧ dα ∧ dβ)y = f(y)(dy1 ∧ . . . ∧ dyn)y, with f analytic in y = (y1, . . . , yn). Since
ω′y(v1, . . . , vn−2) 6= 0 it is clear from (12) that f(y) = 0 if and only if (dα ∧ dβ)y = 0.

Consider now the ratio r′(y) =
(ω∧dα∧dβ)y

(dy1∧...∧dyn)y
. If (dα ∧ dβ)y 6= 0 (and then f(y) 6= 0),

r′(y) is equal to f(y)r(y) (this follows from (11), (12) and the expression of (ω′∧dα∧dβ)y).
If (dα ∧ dβ)y = 0, then r′(y) = 0. But we have also f(y) = 0 and then f(y)r(y) = 0.

Thus in both cases we have r′(y) = f(y)r(y).

Let us apply this lemma to the 1-forms ω = zdy1, ω′ = dz and to an irreducible
component Γj of Γ. The property dz|Γj 6= 0 is satisfied since Z(z, P, y2) is an isolated
intersection. We obtain

f(y)
zdy1|Γj
dz|Γj

=
(zdy1 ∧ dP ∧ dy2)y
(dy1 ∧ dy2 ∧ dz)y

= z
∂P

∂z
.

Reminding notations of Subsection 2.2, we have

e

(
zdy1|Γj
dz|Γj

, Ij

)
= e

(
z
∂P

∂z
, Ij

)
− e(f, Ij) ≤ e

(
z
∂P

∂z
, Ij

)
.(13)

Finally, it follows from formulae (3) and (10) that the multiplicity µ satisfies

µ ≤ e
(
z
∂P

∂z
, I
)
≤ µ1 + µ2

where µ1 = e(z, I) and µ2 = e(∂P∂z , I).

We first calculate µ1 = e(z, P (y), y2). In the original coordinates x we can write µ1

as µ1 = e(P (x), l(x), y2) = e(P (x)|l(x)=0, y2|l(x)=0) (see Proposition 4). The intersection
is isolated (remind that it was required to write formula (10)) and all the terms are
polynomials in x. The estimate follows from Bézout’s theorem:

µ1 ≤ p.(14)

The second term µ2 is e(∂P∂z (y), P (y), y2). Notice that ∂P
∂z cannot be divisible by P .

As P is irreducible, we can choose the mapping l and A of Proposition 4 such that the
intersections Z(∂P∂z (y), P (y), y2) and Z(∂P∂z (y), P (y), z) are isolated. We can then apply

again Lemma 2 to the ideal I ′ = (P (y), ∂P∂z (y)) (which defines a curve Γ′) and to the
functions φ′(y) = y2 and ψ(y) = z, and obtain

µ2 = e(φ′, I ′) = e

(
ψ
dφ′|Γ′
dψ|Γ′

, I ′
)
.(15)
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Therefore we can write µ2 = µ3 + µ4 with µ3 = e(z, I ′) and µ4 = e(dy2|Γ′
dz|Γ′

, I ′) (this last

multiplicity is defined since Z(∂P∂z (y), P (y), z) is isolated and µ2 is defined).

We first estimate µ3 = e(z, P (y), ∂P∂z (y)). Recall that ∂P
∂z is the Lie derivation ξ.P of P

by ξ. In the original coordinates, this derivation is given by ξ.P (x) =
∑3
i=1Xi(x) ∂P∂xi (x).

Thus this is a polynomial in x of degree not exceeding p+d−1; µ3 = e(l(x), P (x), ξ.P (x))
is then the multiplicity of a polynomial intersection. From Bézout’s theorem we have

µ3 ≤ p(p+ d− 1)(16)

Let us introduce now a deformation (as defined in Subsection 2.2) of P given in the

original coordinates by: P̃ (x, ε) = P (x) − ε(a + b l(x)) where a, b ∈ C are generic. P ε is

polynomial in x of degree p. In the new coordinates this is a deformation P̃ (y, ε) of P (y).
We will express µ4 by using the multiplicities of deformations (see Subsection 2.2).

Since the multiplicity µ4 is defined, we have from Proposition 1

µ4 = #

(
(dy2 ∧ dε)|Γ̃′
(dz ∧ dε)|

Γ̃′

, Ĩ ′
)
.

We can apply now Lemma 5 to the 2-forms (dy2∧dε) and (dz∧dε) and to the irreducible

components of Γ̃′. We have seen that Z(∂P∂z (y), P (y), z) is an isolated intersection, so the
condition (dz ∧ dε)|

Γ̃′
6= 0 is satisfied.

By using formula (4) and the argument of formula (13), we have, assuming that µ′4 is
the multiplicity of a special deformation (recall that formula (4) is true only for special
deformations)

µ4 = #

(
(dy2 ∧ dε)|Γ̃′
(dz ∧ dε)|

Γ̃′

, Ĩ ′
)
≤ #

(
d(∂P̃∂z ) ∧ dP̃ ∧ dy2 ∧ dε
dy1 ∧ dy2 ∧ dz ∧ dε

, Ĩ ′
)

= µ′4.

We have:

d(∂P̃∂z ) ∧ dP̃ ∧ dy2 ∧ dε
dy1 ∧ dy2 ∧ dz ∧ dε

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2P̃
∂z∂y1

∂P̃
∂y1

0 0

∂2P̃
∂z∂y2

∂P̃
∂y2

1 0

∂2P̃
∂z2

∂P̃
∂z 0 0

∂2P̃
∂z∂ε

∂P̃
∂ε 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
=
∂P̃

∂y1

∂2P̃

∂z2
− ∂2P̃

∂z∂y1

∂P̃

∂z
.

Since ∂P̃
∂z (y) = 0 for y ∈ Γ̃′, we can write µ′4 as

µ′4 = #

(
∂P̃

∂y1

∂2P̃

∂z2
, Ĩ ′
)
.

Thus µ′4 will be the multiplicity of a special deformation if both deformations (∂
2P̃
∂z2 , Ĩ

′)

and ( ∂P̃∂y1
, Ĩ ′) are special. We will have then µ′4 = µ5 + µ6 with µ5 = #(∂

2P̃
∂z2 , Ĩ

′) and

µ6 = #( ∂P̃∂y1
, Ĩ ′).

Proposition 6. Let Q(x) = P (x)− a− b l(x). Then, for generic a and b, the inter-

section {Q = ∂Q
∂z = ∂2Q

∂z2 = 0} is isolated.

P r o o f. Let us first notice that, from Proposition 4, we have z = l(x)u(x), with
u(O) 6= 0. Therefore ∂l

∂z is invertible near the origin. Since ∂Q
∂z = ∂Q

∂l
∂l
∂z , the functions ∂Q

∂z
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and ∂Q
∂l have the same zeroes. Moreover,

∂2Q

∂z2
=
∂2Q

∂l2

(
∂l

∂z

)2

+
∂Q

∂l

∂2l

∂z2
,

so {Q = ∂Q
∂z = ∂2Q

∂z2 = 0} has the same zeroes as {Q = ∂Q
∂l = ∂2Q

∂l2 = 0}. Then we have

to prove that, for generic a and b, the intersection {P − a− b l = ∂P
∂l − b = ∂2P

∂l2 = 0} is
isolated.

We can always assume P (O) = ∂P
∂z (O) = 0 (otherwise µ ≤ 2), and then ∂P

∂l (O) = 0.

Since P is not identically zero, this implies that ∂2P
∂l2 is not identically zero either. Thus

{∂
2P
∂l2 = 0} has codimension one. Locally this subspace has finitely many connected com-

ponents. For a generic b, the function ∂P
∂l does not have a constant value b on any of these

components of codimension 1. Hence, for a generic b, the subspace {∂
2P
∂l2 = ∂P

∂l − b = 0}
has codimension at least two. Let us fix such a generic b.

We can repeat the same arguments with {∂
2P
∂l2 = ∂P

∂l − b = 0} instead of {∂
2P
∂l2 = 0}

and P − b l = a instead of ∂P∂l = b. This shows that {∂
2P
∂l2 = ∂P

∂l − b = P − b l−a = 0} has

codimension at least 3, for a generic a. That means that the intersection {∂
2Q
∂l2 = ∂Q

∂l =
Q = 0} is isolated and the proof is done.

This proposition, applied to Q(x) = P ε(x), for small ε 6= 0, implies that the defor-

mation (∂
2P̃
∂z2 , Ĩ

′) is special. Furthermore, µ5 can be estimated in the same way as µ3: in

the original coordinates µ5 = #(P̃ (x, ε), ξ.P̃ (x, ε), ξ2.P̃ (x, ε)) where P̃ , ξ.P̃ and ξ2.P̃ are
polynomials in x of degree not greater than, respectively, p, p + d − 1 and p + 2(d − 1).
We apply Remark 2 and obtain

µ5 ≤ p(p+ d− 1)(p+ 2(d− 1)).(17)

The same kind of arguments as in the proof of Proposition 6 proves that if Q(y) is an
analytic function such that ∂Q

∂z is not identically zero, then, for a generic a, the intersection

{Q − a = ∂Q
∂z = ∂Q

∂y1
= 0} is isolated. By setting Q(y) = P (y) − b l(y)ε, for small ε 6= 0,

it follows that (P̃ , ∂P̃∂z ,
∂P̃
∂y1

) is a special deformation. To estimate the multiplicity µ6, we

would like to replace ∂P̃
∂y1

by a polynomial in x and then apply Bézout’s theorem. This
will be possible, due to the following lemma.

Lemma 7. There exists a vector field ξ0(x) = ξ0 constant in the coordinates x such
that

#

(
P̃ ,

∂P̃

∂z
,
∂P̃

∂y1

)
= #

(
P̃ ,

∂P̃

∂z
, ξ0.P̃

)
.

This lemma allows to write µ6 = #(P̃ (x, ε), ξ.P̃ (x, ε), ξ0.P̃ (x, ε)). By applying Re-
mark 2 we have then

µ6 ≤ p(p+ d− 1)(p− 1).(18)

Finally, the multiplicity µ satisfies µ ≤ µ1 + µ3 + µ5 + µ6. By using estimates (14), (16),
(17), (18) we have

µ ≤ p+ 2p(p+ d− 1)2

which is the estimate required in Theorem 3.



MULTIPLICITY OF POLYNOMIALS ON TRAJECTORIES 119

P r o o f o f L e m m a 7. Let us recall that #(P̃ , ∂P̃∂z ,
∂P̃
∂y1

) is defined as the number

of isolated zeroes, counted with their multiplicities, of {P ε = ∂P ε

∂z = ∂P ε

∂y1
= 0}, ε 6= 0,

converging to the origin O when ε→ 0.

Let γ be the curve defined by the ideal (P, ∂P∂z ) (γ is a curve because we assume P
irreducible). If x ∈ γ, let T (x) be the tangent to γ at x, and L(x) be the 2-plane (vector
space) spanned by T (x) and the z-axis Lz (L(x) is a plane for x small and 6= O, because
by hypothesis γ does not contain the z-axis which is the integral curve of ξ). If x tends
to 0, the planes L(x) have a finite number of limit positions Li, 1 ≤ i ≤ l (at most one
for each local irreducible component of γ). Let ξ0 be an analytic vector field such that
ξ0(O) 6∈ Li, 1 ≤ i ≤ l, and M(x) be the 2-plane spanned by ξ0(x) and Lz (M(x) is a
2-plane for small x because by hypothesis ξ0(O) 6∈ Li).

Let Bδ be the ball of center O and radius δ, Sδ = ∂Bδ.

Proposition 8. Under the above hypothesis, there exists δ0 > 0 such that for δ ≤ δ0,
there exists ε0 such that the system

P ε =
∂P ε

∂z
= ξ0P

ε = 0(19)

has no solution on Sδ for ε ≤ ε0.

P r o o f. Let d be a distance function on the projective space of 2-planes in C3. Hy-
pothesis ξ0(O) 6∈ Li implies that there exist C > 0 and δ0 > 0 such that for any δ ≤ δ0
we have d(L(x),M(x′)) > C for x ∈ γ∩Sδ, x′ ∈ Sδ (by continuity of d). If xε is a solution
of (19), the tangent plane to the (smooth) surface Sε = {P ε = 0} is M(x), and it is close
to L(x′) for x′ ∈ γ ∩ Sδ (this is because near a smooth point x ∈ γ, the tangent to γε

at a point xε is close to the tangent T (x) to γ). But that is impossible if δ ≤ δ0, since
d(L(x),M(x′)) > C.

This proposition implies easily the following facts:

• There exists δ0 > 0 such that for ε small enough, the set defined in Bδ0 by the
system (19) is made with isolated points. In fact, if not, the set of solutions of (19) would
contain a connected component of γε∩Bδ, which is impossible, because such a component
must intersect Sδ.
• The limit (when ε→ 0) of all solutions of (19) is O. In fact, if there exist no sequence

of such limit points converging to O, we can choose δ0, small enough such that Bδ does
not contain any limit point. If there exists a sequence of such limit points converging
to O, for any δ0, we would find a solution of (19) in Sδ for some δ ≤ δ0 for arbitrarily
small ε.

These two facts prove that the number of solutions of (19) in Bδ (for small δ), is

exactly the number #(P̃ , ∂P̃∂z , ξ0.P̃ ) we are looking for.
Now, set ξ1 = ∂/∂y1. In the x-coordinates, set ξ1 = ξ1(O)+ξ2, ξt = ξ1(O)+tξ2. Then,

by compactness of [0, 1], we may assume that for δ ≤ δ0, the conclusion of Proposition 8
is valid for any t ∈ [0, 1]. Then, for ε ≤ ε0, the number of solutions of

P ε =
∂P ε

∂z
= ξtP

ε = 0

in the ball Bδ is locally independent of t ([1], p. 76), and so, by connectivity of [0, 1],
constant for t ∈ [0, 1]. That proves Lemma 7.
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4. Degree of nonholonomy. Let Σ = {χ1, . . . , χs} be a set of vector fields in Cn.
Let L1 = L1(χ1, . . . , χs) the set of all linear combinations, with complex coefficients, of
the vector fields χ1, . . . , χs. We define recursively Li = Li(χ1, . . . , χs) by setting

Li = Li−1 + [L1,Li−1]

for i ≥ 2. The union L = L(χ1, . . . , χs) of all Li is the Lie algebra generated by the vector
fields χi.

For x ∈ Cn, let Li(x) (resp. L(x)) be the linear subspace generated by the values at x
of the vector fields in Li(Σ) (resp. in L(Σ)). The minimal i such that dimLi(x) = dimL(x)
is denoted by r(x) and called degree of nonholonomy of Σ at x. Due to the importance of
this degree in nonholonomic control theory (see for instance [2]), the problem of bounding
it arises in a natural way.

Let us consider vector fields χ1, . . . , χs whose coordinates are polynomials of degree
not exceeding d. The problem is to find a bound on the degree of nonholonomy in terms
of degree d and of dimension n. Let us state a result of Gabrielov [5]:

Let x ∈ Cn. Under the above hypothesis, there exists a polynomial vector field ξ of
degree not exceeding 2n−3d and a polynomial P of degree not exceeding 2n−1d such that :

• P |γ 6≡ 0, where γ denotes the trajectory of ξ through x;

• if µ denotes the order of P |γ at x, then

r(x) ≤ 2n−2 + µ2n−3.

Thus a bound on the order µ gives also a bound on the degree of nonholonomy. As a
consequence of Theorem 3 we have then

Theorem 9. Let Σ = {χ1, . . . , χs} be a set of vector fields on C3 whose coordinates
are polynomials of degree not greater than d; let r(x) be the degree of nonholonomy of Σ
at x ∈ C3. Then we have the following upper bound :

r(x) ≤ 2 + 4d+ 8d(5d− 1)2.

References

[1] V. I. Arnol′d, S. M. Guse ı̆n-Zade and A. N. Varchenko, Singularities of Differentiable
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