
Neural Networks
Workshop

Tony Allen

Department of Mathematics
Purdue University

July 1, 2019

Tony Allen NN Workshop July 1, 2019 1 / 30



Helpful Resources

I Goodfellow, Bengio, Courville’s Deep Learning
https://www.deeplearningbook.org/

I Francis Chollet’s Deep Learning with Python https://github.com/

fchollet/deep-learning-with-python-notebooks

I Dr. Buzzard MA598 Course Notes
https://www.math.purdue.edu/~buzzard/MA598-Spring2019/

I Nick Winovich’s SIAM@Purdue TensorFlow Workshop
https://www.math.purdue.edu/~nwinovic/workshop.html

Tony Allen NN Workshop July 1, 2019 2 / 30

https://www.deeplearningbook.org/
https://github.com/fchollet/deep-learning-with-python-notebooks
https://github.com/fchollet/deep-learning-with-python-notebooks
https://www.math.purdue.edu/~buzzard/MA598-Spring2019/
https://www.math.purdue.edu/~nwinovic/workshop.html


What is Machine Learning?

Machine Learning shifts the paradigm from programming for answers to
programming to discover rules.

Diagram adapted from Francis Chollet’s Deep Learning with Python
Tony Allen NN Workshop July 1, 2019 3 / 30



Neural Networks

Artificial Neuron: The building blocks of a neural network

Mathematically, y = f(w1x1 + w2x2 + w3x3 + b)

= f(wTx+ b)

Diagram from Nick Winovich
Tony Allen NN Workshop July 1, 2019 4 / 30



Neural Networks

Artificial Neuron: The building blocks of a neural network

Mathematically, y = f(w1x1 + w2x2 + w3x3 + b)

= f(wTx+ b)

Diagram from Nick Winovich
Tony Allen NN Workshop July 1, 2019 4 / 30



Neural Networks

Tony Allen NN Workshop July 1, 2019 5 / 30



Neural Networks

We can combine the corresponding equations

y1 = f(w1
Tx+ b1)

y2 = f(w2
Tx+ b2)

into one matrix-vector product equation

y = f(Wx+ b)

If we have N inputs and M outputs, then W is a Dense M ×N matrix.

(for the picky: f is applied element-wise)
Tony Allen NN Workshop July 1, 2019 6 / 30



Dense (Fully Connected) Layer

Diagram from Nick Winovich
Tony Allen NN Workshop July 1, 2019 7 / 30



Network Depth

y = f2(W2(f1(W1x+ b1)) + b2)

Diagram from Nick Winovich
Tony Allen NN Workshop July 1, 2019 8 / 30



Network Depth

y = f3(W3(f2(W2(f1(W1x+ b1)) + b2)) + b3)

Diagram from Nick Winovich
Tony Allen NN Workshop July 1, 2019 9 / 30



A Word on Activation Functions

Activation functions are a fundamental component of network
architecture; they allow for non-linear modeling capacity, and control the
gradient flow that guide training.

Figures from Nick Winovich



Optimization (How to learn)

Goal: Learn weights so the network gives desired output

Everything today will be Supervised Learning:

x Neural Net ŷ

loss(y, ŷ)
Update weights

Adjust weights wi,j to minimize the loss

Tony Allen NN Workshop July 1, 2019 11 / 30



Gradient Descent

From calculus: The greatest decrease in a function is in the direction
opposite of the gradient.

Let θ be all the parameters (weights and biases) and E be total loss over
all data. Then iteratively apply a method called Gradient Descent:

θk+1 = θk − αk∇Eθk

However, computing gradient of loss over all data can be expensive. So
instead compute it over random subsets of data (batches). This leads to
Stochastic Gradient Descent algorithms.

Tony Allen NN Workshop July 1, 2019 12 / 30



Gradient Descent

From calculus: The greatest decrease in a function is in the direction
opposite of the gradient.

Let θ be all the parameters (weights and biases) and E be total loss over
all data. Then iteratively apply a method called Gradient Descent:

θk+1 = θk − αk∇Eθk

However, computing gradient of loss over all data can be expensive. So
instead compute it over random subsets of data (batches). This leads to
Stochastic Gradient Descent algorithms.

Tony Allen NN Workshop July 1, 2019 12 / 30



Gradient Descent

From calculus: The greatest decrease in a function is in the direction
opposite of the gradient.

Let θ be all the parameters (weights and biases) and E be total loss over
all data. Then iteratively apply a method called Gradient Descent:

θk+1 = θk − αk∇Eθk

However, computing gradient of loss over all data can be expensive. So
instead compute it over random subsets of data (batches). This leads to
Stochastic Gradient Descent algorithms.

Tony Allen NN Workshop July 1, 2019 12 / 30



Back Propagation

How do we compute the gradient, i.e.
∂E

∂wij
?

The answer: Chain Rule!

Tony Allen NN Workshop July 1, 2019 13 / 30



Back Propagation

Diagram from Nick Winovich
Tony Allen NN Workshop July 1, 2019 14 / 30



Back Propagation

Diagram from Nick Winovich
Tony Allen NN Workshop July 1, 2019 15 / 30



Back Propagation

Diagram from Nick Winovich
Tony Allen NN Workshop July 1, 2019 16 / 30



Back Propagation

Diagram from Nick Winovich
Tony Allen NN Workshop July 1, 2019 17 / 30



Let’s actually do something! (Exercise 1)

The Notebook to follow along can be found on the Workshop homepage:
https:

//engineering.purdue.edu/ChanGroup/MLworkshop2019.html

Tony Allen NN Workshop July 1, 2019 18 / 30

https://engineering.purdue.edu/ChanGroup/MLworkshop2019.html
https://engineering.purdue.edu/ChanGroup/MLworkshop2019.html


Overfitting

In some cases, a network can learn too much. That is, it can learn to
perform well on the training data, but fail to generalize to testing data.
Solutions include Regularization and Dropout.

Tony Allen NN Workshop July 1, 2019 19 / 30



Regularization and Dropout

Regularization adds a penalty for large weights to the loss function.
Commonly, we use

I L1 norm, which encourages sparsity

I L2 norm, which encourages small weights

loss = loss + λ‖θ‖1 (or ‖θ‖2)

Dropout temporarily ignoring random nodes (with fixed probability p)
during each training iteration. Ensures no individual node dominates.

Tony Allen NN Workshop July 1, 2019 20 / 30



Exercise 2

In this exercise, we will try to improve the previous model by adding
dropout. You should use the Keras Documentation
(https://keras.io/) to create a network with at least 2 hidden layers
that use dropout. Plot the training loss and print the test accuracy, and
compare to the previous model.

Tony Allen NN Workshop July 1, 2019 21 / 30

https://keras.io/


Convolutional Neural Networks (CNNs)

CNNs are useful when the data is spatially structured (e.g. images).

The key concept behind CNNs is that of kernels/filters. These are used in
hand-crafted feature detection.

What are good, distinguishing features? How do we mathematically
extract such features?

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-
learning-1f6f42faee1

Tony Allen NN Workshop July 1, 2019 22 / 30



Convolution

https://github.com/PetarV-/TikZ/tree/master
Tony Allen NN Workshop July 1, 2019 23 / 30



Pop Quiz

Let I =


1 2 0 1 3
2 0 1 4 0
7 0 9 5 5
8 5 2 6 0
8 0 0 1 4

 and K =

1 1 0
0 0 0
0 0 2

.

1 What is (I ∗K)(1, 1)?

2 What is the size of I ∗K?



Matrix View

In practice, we perform a convolution as one large matrix-vector product
that does all the work in one go.

I =


1 2 0 1 3
2 0 1 4 0
7 0 9 5 5
8 5 2 6 0
8 0 0 1 4

 and K =

1 1 0
0 0 0
0 0 2

.

I ∗K =


1 1 0 · · · 2 0 0 · · · 0
0 1 1 · · · 0 2 0 · · · 0
0 0 1 · · · 0 0 2 · · · 0

...
...

0 0 0 · · · 1 1 0 · · · 2





1
2
0
...
9
...
1
4


=


21
12
11
...
22



Words: Toeplitz, Sparse



Convolutional Neural Network

Key Ideas of a CNN:

1 Instead of expensive dense matrix-vector products, do convolutions

2 Everything else stays the same (activation functions, training, etc.)

CNNs scale very well to large images because of their sparse connections
and natural space invariance.

Of course I have skipped some details, so let me touch on those:

I Stride

I Padding

I Pooling

Tony Allen NN Workshop July 1, 2019 26 / 30



Convolutional Neural Network

Key Ideas of a CNN:

1 Instead of expensive dense matrix-vector products, do convolutions

2 Everything else stays the same (activation functions, training, etc.)

CNNs scale very well to large images because of their sparse connections
and natural space invariance.

Of course I have skipped some details, so let me touch on those:

I Stride

I Padding

I Pooling

Tony Allen NN Workshop July 1, 2019 26 / 30



Stride and Padding

When defining a convolution, we need to specify how fast and to what
extent the kernel slides over the image. This is the stride and padding,
respectively. Both of these determine the size of the output.

In Keras,

I “strides = 2”, determines how many pixels the kernel moves at a time
(in this case two)

I “padding = same” puts zeros around the image so that the output is
the same size as the input. Called zero-padding.

I “padding = valid” puts zeros in the necessary places so that the
convolution stays valid

Tony Allen NN Workshop July 1, 2019 27 / 30



Max Pooling

Often, we care about the existence of a feature. Max Pooling is one way
to reduce dimensionality while keeping information about the existence of
a feature.

In my experience, you see this applied after a stride = 1 convolution with
zero-padding.

https://computersciencewiki.org/index.php/Max-pooling
Tony Allen NN Workshop July 1, 2019 28 / 30



Exercise 3

In this exercise, we implement a CNN and see how much better it
performs on our image classification task.

Tony Allen NN Workshop July 1, 2019 29 / 30



Fin.

Tony Allen NN Workshop July 1, 2019 30 / 30


