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Helpful Resources

I Goodfellow, Bengio, Courville’s Deep Learning
https://www.deeplearningbook.org/

I Francis Chollet’s Deep Learning with Python https://github.com/

fchollet/deep-learning-with-python-notebooks

I Dr. Buzzard MA598 Course Notes
https://www.math.purdue.edu/~buzzard/MA598-Spring2019/

I Nick Winovich’s SIAM@Purdue TensorFlow Workshop
https://www.math.purdue.edu/~nwinovic/workshop.html
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What is Machine Learning?

Machine Learning shifts the paradigm from programming for answers to
programming to discover rules.

Diagram adapted from Francis Chollet’s Deep Learning with Python
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Neural Networks

Artificial Neuron: The building blocks of a neural network

Mathematically, y = f(w1x1 + w2x2 + w3x3 + b)

= f(wTx+ b)

Diagram from Nick Winovich
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Neural Networks
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Neural Networks

We can combine the corresponding equations

y1 = f(w1
Tx+ b1)

y2 = f(w2
Tx+ b2)

into one matrix-vector product equation

y = f(Wx+ b)

If we have N inputs and M outputs, then W is a Dense M ×N matrix.

(for the picky: f is applied element-wise)
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Dense (Fully Connected) Layer

Diagram from Nick Winovich
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Network Depth

y = f2(W2(f1(W1x+ b1)) + b2)

Diagram from Nick Winovich
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Network Depth

y = f3(W3(f2(W2(f1(W1x+ b1)) + b2)) + b3)

Diagram from Nick Winovich
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A Word on Activation Functions

Activation functions are a fundamental component of network
architecture; they allow for non-linear modeling capacity, and control the
gradient flow that guide training.

Figures from Nick Winovich



Optimization (How to learn)

Goal: Learn weights so the network gives desired output

Everything today will be Supervised Learning:

x Neural Net ŷ

loss(y, ŷ)
Update weights

Adjust weights wi,j to minimize the loss
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Gradient Descent

From calculus: The greatest decrease in a function is in the direction
opposite of the gradient.

Let θ be all the parameters (weights and biases) and E be total loss over
all data. Then iteratively apply a method called Gradient Descent:

θk+1 = θk − αk∇Eθk

However, computing gradient of loss over all data can be expensive. So
instead compute it over random subsets of data (batches). This leads to
Stochastic Gradient Descent algorithms.
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Back Propagation

How do we compute the gradient, i.e.
∂E

∂wij
?

The answer: Chain Rule!
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Back Propagation

Diagram from Nick Winovich
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Back Propagation
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Back Propagation

Diagram from Nick Winovich
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Let’s actually do something! (Exercise 1)

The Notebook to follow along can be found on the Workshop homepage:
https:

//engineering.purdue.edu/ChanGroup/MLworkshop2019.html
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Overfitting

In some cases, a network can learn too much. That is, it can learn to
perform well on the training data, but fail to generalize to testing data.
Solutions include Regularization and Dropout.
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Regularization and Dropout

Regularization adds a penalty for large weights to the loss function.
Commonly, we use

I L1 norm, which encourages sparsity

I L2 norm, which encourages small weights

loss = loss + λ‖θ‖1 (or ‖θ‖2)

Dropout temporarily ignoring random nodes (with fixed probability p)
during each training iteration. Ensures no individual node dominates.
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Exercise 2

In this exercise, we will try to improve the previous model by adding
dropout. You should use the Keras Documentation
(https://keras.io/) to create a network with at least 2 hidden layers
that use dropout. Plot the training loss and print the test accuracy, and
compare to the previous model.
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Convolutional Neural Networks (CNNs)

CNNs are useful when the data is spatially structured (e.g. images).

The key concept behind CNNs is that of kernels/filters. These are used in
hand-crafted feature detection.

What are good, distinguishing features? How do we mathematically
extract such features?

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-
learning-1f6f42faee1
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Convolution

https://github.com/PetarV-/TikZ/tree/master
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Pop Quiz

Let I =


1 2 0 1 3
2 0 1 4 0
7 0 9 5 5
8 5 2 6 0
8 0 0 1 4

 and K =

1 1 0
0 0 0
0 0 2

.

1 What is (I ∗K)(1, 1)?

2 What is the size of I ∗K?



Matrix View

In practice, we perform a convolution as one large matrix-vector product
that does all the work in one go.

I =


1 2 0 1 3
2 0 1 4 0
7 0 9 5 5
8 5 2 6 0
8 0 0 1 4

 and K =

1 1 0
0 0 0
0 0 2

.

I ∗K =


1 1 0 · · · 2 0 0 · · · 0
0 1 1 · · · 0 2 0 · · · 0
0 0 1 · · · 0 0 2 · · · 0

...
...

0 0 0 · · · 1 1 0 · · · 2





1
2
0
...
9
...
1
4


=


21
12
11
...
22



Words: Toeplitz, Sparse



Convolutional Neural Network

Key Ideas of a CNN:

1 Instead of expensive dense matrix-vector products, do convolutions

2 Everything else stays the same (activation functions, training, etc.)

CNNs scale very well to large images because of their sparse connections
and natural space invariance.

Of course I have skipped some details, so let me touch on those:

I Stride

I Padding

I Pooling
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Stride and Padding

When defining a convolution, we need to specify how fast and to what
extent the kernel slides over the image. This is the stride and padding,
respectively. Both of these determine the size of the output.

In Keras,

I “strides = 2”, determines how many pixels the kernel moves at a time
(in this case two)

I “padding = same” puts zeros around the image so that the output is
the same size as the input. Called zero-padding.

I “padding = valid” puts zeros in the necessary places so that the
convolution stays valid
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Max Pooling

Often, we care about the existence of a feature. Max Pooling is one way
to reduce dimensionality while keeping information about the existence of
a feature.

In my experience, you see this applied after a stride = 1 convolution with
zero-padding.

https://computersciencewiki.org/index.php/Max-pooling
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Exercise 3

In this exercise, we implement a CNN and see how much better it
performs on our image classification task.
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Fin.
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