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Abstract:     Recently developed image reconstruction algorithms for range-compressed 

holography (RCH) have proven effective at correcting distributed-volume atmospheric 

phase errors. However, these methods are limited by speckle and measurement noise. 
In this work, we reformulate the RCH inversion problem in terms of the target's 

underlying speckle-free reflectance rather than the complex-valued field. We also 

present an algorithm for surface reconstruction from phase-corrected RCH data under 
the Multi-Agent Consensus Equilibrium framework, which combines advanced surface 

models for prior information with a physics-based model for data fidelity. Together, this 

reformulation and the use of advanced priors reduces the effects of speckle and 
leverages the spatial correlation in reflectance to suppress measurement noise.  Finally, 

we present a point-cloud-based metric of image quality and demonstrate that our 

algorithm outperforms traditional RCH inversion methods both qualitatively and in 

terms of this metric, particularly in the low photoelectron count regime.   
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1. Introduction 

Digital holography (DH) is a powerful imaging technique for recovering the complex electromagnetic 

field reflected from a distant object. In brief, detection in a DH system involves measuring the 

modulation of a strong reference field by a potentially weak return field. This modulation allows for the 
detection to be shot-noise limited, even in scenarios with a low-power return signal. In practice, DH 

systems are sensitive to phase errors, whether caused by atmospheric turbulence or defects in the optical 

system, which need to be corrected in order to form a focused image. Moreover, many applications 

require DH systems to operate with limited laser power, resulting in images with significant noise and 
speckle. There has been great success in mitigating these effects through computational imaging 

algorithms. Of particular success have been a variety of Image Sharpening algorithms [1–5] which 

correct atmospheric phase errors by maximizing a sharpness metric, and Plug and Play (PnP) algorithms 
[6–10] which, on top of correcting phase errors, mitigate measurement noise and speckle variation 

through an extension of a Bayesian formulation that allows for the use of advanced prior models such 

as neural network denoisers.  

As technologies have advanced, extending the methods of DH to three-dimensional (3D) imaging has 
been the focus of much recent work. One example of this is Range Compressed Holography (RCH), in 

which frequency diversity is introduced during the hologram recording [11,12]. In RCH, a series of DH 

images are recorded, each corresponding to a unique laser frequency. The images are then range 
compressed by Fourier transform over the frequency spectrum resulting in a 3D image. Relative to 2D 

DH, this technique faces additional challenges in terms of phase aberrations [13–16]. Recent work in 

RCH image formation include [14], which addresses differential phase aberrations across temporal 
frequencies by a phase gradient algorithm, and [15,16] which extend the Image Sharpening approach to 

this context. However, these methods do not address the problem of speckle and noise mitigation, which 

could allow RCH systems to operate with less laser power. 

In this paper, we reformulate the RCH inversion problem in terms of the target’s underlying speckle-
free reflectance rather than the complex-valued field. We also present an algorithm for surface 
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reconstruction from phase-corrected RCH data under the Multi-Agent Consensus Equilibrium (MACE) 

[17] framework, which combines advanced surface models for prior information with a physics-based 

model for data fidelity. We assume no atmospheric phase errors are present and instead focus on surface 
detection in the presence of speckle and measurement noise. Together, this reformulation and the use of 

advanced priors reduces the effects of speckle and leverages the spatial correlation in reflectance to 

suppress measurement noise. Finally, we present a point-cloud-based metric of image quality and 
demonstrate that our algorithm outperforms traditional RCH inversion methods both qualitatively and 

in terms of this metric, particularly in the low photoelectron count regime. 

2. Estimation Framework 

For an opaque object illuminated by a coherent source of wavelength 𝜆, DH allows one to image the 

field in the object plane,  

 𝑈(𝑥, 𝑦; 𝜆) = 𝑓(𝑥, 𝑦) exp .2𝜋𝑗 !"($,&)( 2, (1) 

where (𝑥, 𝑦) are the coordinates of the object plane, 𝑓(𝑥, 𝑦) is the complex reflectance of the object, 𝑑(𝑥, 𝑦) is the distance from the object to the object plane, and the extra factor of 2 accounts for the 

round-trip distance. For simplicity, ignoring effects such as magnification, we assume the field in the 

object plane to be the ideal field recovered in the image plane. Using a single wavelength, the range 

information of the object is only available modulo 2𝜋 on the order of the wavelength. 

By a process called range compression, one can further disambiguate the range information by 

introducing wavelength (frequency) diversity. This can be achieved in several waves, such as recording 

multiple holograms at individually tuned frequencies [15], or by using a linear frequency chirp [13]. 

The principal relation of RCH expresses the ideal image of the object’s 3D complex reflectance,	𝑔(𝑥, 𝑦, 𝑧), as the inverse Fourier transform 𝑈(𝑥, 𝑦; 𝜆) as a function of 𝜉 = 2/𝜆, 

 𝑔(𝑥, 𝑦, 𝑧) = ∫ 𝑈(𝑥, 𝑦; 𝜉) exp{2𝜋𝑗𝜉𝑥} 𝑑𝜉)
*) = 𝑓(𝑥, 𝑦)𝛿=𝑧 − 𝑑(𝑥, 𝑦)?. (2) 

This formulation assumes the object is opaque, allowing just one range return for each (𝑥, 𝑦) cross-
range location, but it can be generalized to account for non-opaque objects as well. Under appropriate 

diffraction-limited, narrowband, and shot-noise-limited assumptions [19], the modulated, noisy, 

complex image 𝑌(𝑥, 𝑦, 𝑧) at the image plane can modeled as 

 𝑌(𝑥, 𝑦, 𝑧) = (𝑔 ∗ ℎ)(𝑥, 𝑦, 𝑧) + 𝜂(𝑥, 𝑦, 𝑧), (3) 

where ∗ denotes convolution, ℎ(𝑥, 𝑦, 𝑧) represents the point spread function (PSF) that accounts for the 

effects of propagation, and 𝑤 is the measurement noise.  

In practice, the imaged field is more accurately modeled as a discrete sampling of 𝑌(𝑥, 𝑦, 𝑧). We can 

write a discrete representation of the model in Eq. (3) as 𝑦 = 𝐴𝑔 + 𝜂, where 𝐴 ∈ ℂ+×+	is the matrix 

representation of convolution with ℎ,  𝑔 ∈ ℂ+  is the vectorized complex reflectance, and 𝜂 ∈ ℂ+  is 

measurement noise distributed as 𝐶𝑁=0, 𝜎.!𝐼, 0? [20]. Together, this gives the conditional distribution 

of our measure data 𝑦 ∈ ℂ+  given the complex reflectance 𝑔 as 𝐶𝑁=𝐴𝑔, 𝜎.!𝐼, 0?. Standard inversion 

methods produce a reconstruction of 𝑔, which leads to a speckled intensity image, |𝑔|∘!, where the 

modulus-squared is taken elementwise.  

Instead of estimating 𝑔,	we estimate its expected intensity, or speckle-free reflectance, 𝑟 = 𝐸[|𝑔|∘!]. As 

in [8], we model speckle 𝑔|𝑟 as a circularly symmetric complex Gaussian distribution. Combining this 

with 𝑦|𝑔 , we get the conditional distribution of the data given the speckle free reflectance as 𝑦|𝑟~𝐶𝑁 U0, =𝐴𝒟(𝑟)𝐴0 + 𝜎.!𝐼?*1, 0W, where 𝒟(𝑟) is a diagonal matrix with elements given by 𝑟. 

In practice, a common method to reduce speckle is to exploit multiple recordings of the object that are 

captured under various realizations (looks) of the noise process. This is often done by slight adjustments 
to the recording set-up that provide independent noise samples while keeping the signal highly 

correlated. This can be effectively modelled as independent measurements of the data 𝑦ℓ|𝑟 that have the 

same distribution as 𝑦|𝑟 for each look, ℓ. 
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Our method of estimating 𝑟 is based on the maximum a posteriori (MAP) estimate, which can be seen 

as a regularization of the maximum likelihood estimate. Assuming 𝐿 looks, this can be written as 

  �̂�345 = argmin
6∈ℝ!

a−∑ log 𝑝(𝑦ℓ|𝑟)9
ℓ:1 − ∑ 𝛽;ℎ;(𝑟)<

;:1 g, (4) 

where 𝛽; > 0 controls the amount of regularization applied by ℎ; , and together the 𝐾  regularizers 

constitute a prior model. The following section describes an algorithm for solving a generalization of 

Eq. (4) that allows for the use of state-of-the-art regularization techniques. 

3. Algorithm 

Under the MACE framework, the optimization problem of Eq. (4) is equivalent to a set of consensus 

equilibrium (CE) conditions. As in [17], we define the operators 𝐹ℓ(𝑤; 𝜎!)  and 𝐻;(𝑤; 𝜎!)  to be 

proximal maps of − log 𝑝(𝑦ℓ|𝑟) and −𝛽;ℎ;(𝑟), respectively. Further, we define the stacked vector  𝒘 = [𝑤1, … , 𝑤9=<] ∈ ℝ+×(9=<)  as the concatenation of the 𝐿 + 𝐾  state vectors, along with the 

operators 𝐹 ∶ ℝ+×(9=<) → ℝ+×(9=<) and 𝐺 ∶ ℝ+×(9=<) → ℝ+×(9=<) as  

 𝐹(𝒘) = [𝐹1(𝑤1), … , 𝐹9(𝑤9), 𝐻1(𝑤9=1), … , 𝐻<(𝑤9=<)], (5) 

 𝐺(𝒘) = [𝒘r,… ,𝒘r], (6) 

where  𝒘r = ∑ 𝜇>𝑤>9=<
>:1  is a weighted average of the input vectors. With this notation, the solution of 

Eq. (4) is �̂� = ∑ 𝜇>𝑤>∗9=<	
>:1 , where 𝒘∗ = [𝑤1∗, … , 𝑤9=<∗ ] satisfies the CE condition 𝐹(𝒘∗) = 𝐺(𝒘∗).  

This is the core problem solved by Plug and Play (PnP) algorithms [21]. In these algorithms, one or 

more of the proximal maps 𝐻; are replaced with advanced denoisers, such as BM3D [22] or deep neural 

networks. In [17], it is shown that the solution 𝒘∗ can be found by Mann iterations of the operator 𝑇 =(2𝐺 − 𝐼)(2𝐹 − 𝐼). For a fixed parameter 𝜌 ∈ (0,1), this takes the form 𝒘@=1 = (1 − 𝜌)𝒘@ + 𝜌𝑇(𝒘@). 
The agents 𝐻; should be chosen to enforce spatial regularity and together act as an algorithmic encoding 

of the prior information. In this work, we choose 𝐻1 to be the application of BM3D on each 𝑥𝑦-slice of 

the 3D volume, while 𝐻! and 𝐻A	perform the same action on the 𝑦𝑧 and 𝑥𝑧-slices, respectively. This 

approach, called multi-slice fusion [23,24], yields an efficient 3D volume regularizer. 

The forward agents, the proximal maps 𝐹ℓ(𝑤; 𝜎!), are solved as follows. Omitting the subscript ℓ for 

clarity, we use the likelihood 𝑝(𝑦|𝑟), and remove terms independent of 𝑟, to get the proximal map 

  𝐹(𝑤; 𝜎!) = argmin
6∈ℝ"

.logw𝐴𝒟(𝑟)𝐴0 + 𝜎.!𝐼w + 𝑦0=𝐴𝒟(𝑟)𝐴0 + 𝜎.!𝐼?*1𝑦 + 1
!B# ‖𝑟 − 𝑤‖!2. (8) 

For computational efficiency, we assume 𝐴 is orthogonal, with 𝐴0𝐴 = 𝛼𝐼. In which case, the proximal 

map becomes 

  𝐹(𝑤; 𝜎!) ≈ argmin
6$CD

{∑ |logw𝑟> + 𝜎.!/𝛼w + EF4%&G
$
E
#

6$=B&#/I
} + 1

B# ‖𝑟 − 𝑤‖!+
>:1 ~. (9) 

Since the cost function in Eq. (9) is separable in 𝑟>, we can solve for each 𝑟> independently of the others. 

The solution of this optimization problem can be shown to be a non-negative root of a cubic equation.  

    

Figure 1. Target of simulated RCH detection. 
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4. Results 

In this section, we present results from a set of simulated data. The subject of this experiment is shown 

in Figure 1.  We present 3D images as a pair of intensity (left) and depth (right) maps. These are taken 
as the maximum intensity, and the location of the maximum intensity, along the imaging axis, 

respectively. We simulated the RCH detection of statistically independent speckle realizations of this 

scene at various signal-to-noise-ratios (SNRs). We compare the results of a traditional speckle-averaged 

reconstruction, ∑ |𝐴0𝑦ℓ|∘!/𝐿9
ℓ:1 , with the output of our proposed reconstruction algorithm. For each 

instance in the dataset, we initialize our algorithm with the speckle-averaged image and compute a 

maximum of 15 Mann iterations with 𝜌 = 0.5. For each of the forward agents, we use a proximal map 

weight of 𝜎! = 0.01. For the prior agents 𝐻;, each MACE weights 𝜇> are 1/6, with the remainder being 

evenly distributed evenly amongst the 𝐿 forward agents. For these prior agents, the strength of the 

denoiser is determined by a parameter within BM3D which we denote 𝜎J!. We vary this parameter 

according to the amount of noise in the data. 

Assuming an RCH system operating at the shot noise limit, the SNR is proportional to the mean number 
of signal photoelectrons (pe) incident on the recording focal-plane array over the entire laser bandwidth.  

We, however, characterize the SNR in terms of the average number of photoelectrons per cross-range 

pixel of the reconstructed image, which we denote 𝑚r . These quantities are related by a scalar roughly 
equivalent to the number of pixels per diffraction-limited spot [26]. In our simulation, this quantity is 

approximately 7.6. Similarly, the volumetric noise variance 𝜎.! is related by a scalar roughly equivalent 

to the number of voxels in the main lobe of the PSF ℎ, which is approximately 18 in our simulation. In 

summary, simulated detection of 𝑚r  mean photoelectrons per pixel is equivalent to an SNR of 

approximately 7.6 ∗ 𝑚r  and a noise variance 𝜎.! ≈ 1/(18 ∗ 𝑚r) over the diffraction-limited spot. 

The values of 𝑚r  were chosen to be 1/2, 1, 2, 4, and 8 mean photoelectrons per pixel with a corresponding 

denoiser strength, 𝜎J!, of 0.05, 0.04, 0.03, 0.025 and 0.02. Each of the five noise levels were obtained 

using 1, 2, 4, and 8 independent speckle realizations for a total of twenty imaging scenarios. Other 

parameters used in data simulation are summarized in Table 1. 

Table 1. Data Simulation Parameters 

Symbol Parameter Value 𝐿$ , 𝐿& , 𝐿K Target Extent (17.5 m, 17.5 m, 65.0 m) Δ𝑥, Δ𝑦, Δ𝑧 Voxel Size (0.068 m, 0.068 m, 0.254 m) dx, dy, dz Image Resolution (0.166 m, 0.166 m, 0.620 m) 𝐷 Aperture Diameter 2 cm 𝜆 Central Wavelength 1550 nm 𝑍 Path Length 5 km 𝐵 Bandwidth 0.239 GHz Δ𝜔 Frequency Interval 2.30 MHz 

 

   

Figure 2. Speckle-averaged and MACE reconstructions at various SNR. 

Figures 2 and 3 show the MACE reconstruction (bottom) for select scenarios in the simulated data set. 

The results are compared to the standard speckle-averaged intensity reconstruction ∑ |𝐴0𝑦ℓ|∘!/𝐿9
ℓ:1  

(top). Each figure shows the reconstruction as a pair of intensity (left) and depth (right) maps. Figure 2 

shows the results consisting of eight speckle realizations over various values of SNR, while Figure 3 

shows the results for a fixed total SNR of 2 mean photoelectrons per pixel over a variable number of 
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speckle realizations. Through the combination of modeling the speckle-free surface reflectivity and 3D 

denoising priors, our method reconstructs smooth intensity values at accurate depths at significantly 

lower SNR than standard speckle-averaging. In cases with high speckle variation, our approach 
struggles to regularize the intensity values but is still able to remove volumetric background noise to 

find the surface and obtain accurate depth information. 

     

Figure 3. Speckle-averaged and MACE reconstructions with variable number of looks. 

In order to quantitatively analyze our algorithm, we use a metric based on a point cloud representation 

of the image. From a 3D image, we generate a point cloud by taking the maximum intensity in range for 
each cross-range pixel. From this point cloud, we compute the RMSE of the Euclidean distance from 

each point in our reconstruction to the closest point in a high-resolution reference point cloud, as done 

in [27]. This can be interpreted as a generalization of the RMSE on depth images as it allows for inter-
pixel registration of points. Further, it allows the reconstruction to be compared to a high-resolution 

ground truth image without interpolation. One downside of this method is the heavy detriment outliers 

can have on the computation. However, these points can easily be removed by thresholding their 

distance to the ground truth, and their existence provides another metric for quality of reconstruction.  

The point cloud RMSE for the speckle-averaged image (left) and MACE reconstruction (right) are 

shown in Figure 4. The MACE reconstruction sees an improvement in all cases. For example, the MACE 

reconstruction achieves similar metrics at 1 mean photoelectron per pixel as the speckle-averaged 
reconstruction does at 8 mean photoelectrons per pixel. Metrics for outlier removal show similar 

improvements. For high SNR, MACE approaches the minimum achievable point cloud RMSE. 

           

Figure 4. Point cloud RMSE (m) of speckle-averaged (left) and MACE (right) reconstructions. 

5. Conclusion 

We present a new approach for RCH image reconstruction that couples advanced prior models with 

stochastic physics-based models. By first reformulating the inversion in terms of the real-valued 
reflectance, and further by utilizing the MACE framework to incorporate a BM3D image prior and data 

from multiple looks, our proposed method reduces the effects of measurement noise and speckle 

variation. Our results on simulated data indicate that incorporating computational imaging algorithms 

into RCH imaging systems may significantly reduce the laser power required to operate them. 
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