

Multi-Agent Consensus Equilibrium for Range Compressed Holographic Surface Reconstruction

TONY ALLEN

AFRL/RYMM

Purdue University

Collaborators:

Dr. David Rabb - AFRL/RYMM

Dr. Gregery Buzzard - Purdue University

Dr. Charles Bouman - Purdue University

Range Compressed Holography Background

- Form Holograms by interfering signal with off-axis reference
 - Strong reference beam enables shot-noise limited detection
- Use frequency diversity to increase range resolution
 - $\Delta z = c/2B$ and $z_{amb} = c/2\Delta\omega$
- Numerically process & filter to obtain complex images
 - Access to phase allows for aberration correction
 - Current methods limited in low SNR regimes

INNOVATE, ACCELERATE, THRIVE – THE AIR FORCE AT 75

Established 1947

RCH Model

Last slide summarized as a linear equation

$$y = Ag + w$$

 $y \in \mathbb{C}^N$ - measured complex field

 $A \in \mathbb{C}^{M \times N}$ - propagation matrix

 $g \in \mathbb{C}^M$ - complex reflectance

 $w \in \mathbb{C}^N$ - measurement noise (normal)

- Combine this with a statistical model of speckle
 - Ideally, we want $r = E[|g|^2]$ (infinite speckle realizations)
 - Great benefit == high spatial correlation
- Base inversion off MAP Estimate

$$\hat{r}_{MAP} = \arg\min_{r} \{-\log p(r|y)\}$$

Bayesian Inversion Background

Core Problem: How to reconstruct object of interest *x* from noisy measurements y (e.g. from a physical system)?

Obj. of interest: x

Measurements: *y*

INNOVATE, ACCELERATE, THRIVE – THE AIR FORCE AT 75

Bayesian Inversion Background

Core Problem: How to reconstruct object of interest *x* from noisy measurements y (e.g. from a physical system)?

Bayesian perspective:

- A forward model describes distribution of the output y given the input x: p(y|x)
- A prior model describes distribution of the input x: p(x)

Obj. of interest: x

Measurements: y

MAP Estimation:

$$\hat{x}_{MAP} = \arg \max_{x} \{p(x|y)\}$$

$$= \arg \min_{x} \{-\log p(y|x) - \log p(x)\}$$

Strike balance between fitting data & fitting prior knowledge

Regularized Inversion

$$\widehat{x}_{MAP} = \arg\min_{x} \{-\log p(y|x) - \log p(x)\}$$

$$E.g. \ y = Ax + w, \ w \sim N(0, \sigma_w^2 I)$$

$$f(x) = \frac{1}{2\sigma_w^2} ||y - Ax||^2$$

$$Least-squares data fit$$

$$E.g. \ x \sim N(0, I)$$

$$h(x) = \frac{1}{2} ||x||^2$$

$$L_2\text{-regularization}$$

Regularized Inversion – Thin Manifold View

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \{ f(\mathbf{x}) + h(\mathbf{x}) \}$$

E.g.
$$y = Ax + w$$
, $w \sim N(0, \sigma_w^2 I)$
$$f(x) = \frac{1}{2\sigma_w^2} ||y - Ax||^2$$
 Least-squares data fit

E.g.
$$x \sim N(0, I)$$

$$h(x) = \frac{1}{2} ||x||^2$$
 L_2 -regularization

U.S. Air Force Established 1947

Variable Splitting

$$\hat{x} = \arg\min_{x=v} \{ f(x) + h(v) \}$$

• Decouple optimization of f(x) and h(x)

ADMM

- Alternate minimization of f(x) and h(x) with augmented Lagrangian term for communication
- Uses Proximal Maps

$$F(v) = \arg\min_{x} \{f(x) + \lambda ||x - v||^2\}$$

$$H(x) = \arg\min_{v} \{h(v) + \lambda ||v - x||^2\}$$

Interpretation:
Take input, return
something "better"

Variable Splitting

$$\hat{x} = \arg\min_{x=v} \{ f(x) + h(v) \}$$

• Decouple optimization of f(x) and h(x)

Plug and Play

 Replace proximal map(s) with algorithmic model(s), "agents" (e.g. Neural Networks, NLM, BM3D)

$$F(v) = \arg\min_{x} \{ f(x) + \lambda ||x - v||^2 \}$$

Interpretation:
Take input, return
something "better"

Consensus Equilibrium

No longer solves optimization problem

$$\hat{x} = \arg\min_{x} \{ f(x) + h(x) \}$$

What problem are we solving?

Consensus Equilibrium conditions

Find \hat{x} , u_1 , u_2 such that

$$F(\hat{x}+u_1)=H(\hat{x}+u_2)=\hat{x} \qquad \text{Consensus}$$

$$u_1+u_2=0 \qquad \qquad \text{Equilibrium}$$

Multi-Agent Consensus Equilibrium

Consensus Equilibrium conditions

Find \hat{x} , u_1 , ..., u_n such that

$$\begin{cases} F_1(\hat{x} + u_1) = \dots = F_n(\hat{x} + u_n) = \hat{x} & \text{Consensus} \\ u_1 + \dots + u_n = 0 & \text{Equilibrium} \end{cases}$$

Benefit of Multiple Agents:

- Fit multiple data collections in parallel (better than speckle averaging)
- Combination of prior models (e.g. Multi Slice Fusion)

Simulated Experiment

- Simulated RCH detection under various conditions
 - Number of Looks (speckle realizations)
 - SNR, characterized by mean photoelectrons per pixel (pre compression gain)
 - Note: NO turbulent phase errors modeled

- Quality Metric: Point Cloud Root Mean Squared Error (PC-RMSE)
 - Convert 3D image to point cloud
 - Register with ground truth (match closest points)
 - Compute average distance
 - Drop distances > threshold (False Positive)

https://en.wikipedia.org/wiki/File:Cpd fish affine.g

SUBHEAD GOES HERE INNOVATE, ACCELERATE, THRIVE - THE AIR FORCE AT 75

Results – Fixed # of Looks

Results – Fixed total photons

Results – Point Cloud RMSE

QUESTIONS?

CONTANCT: tony.allen.5@us.af.mil