I can see clearly now: Sub-diffraction limit 3D coherent lidar imaging

TONY ALLEN AFRL/RYMM Purdue University

Dr. David Rabb – AFRL/RYMM Dr. Gregery Buzzard – Purdue University Dr. Charles Bouman – Purdue University

3D Coherent LIDAR Imaging

•Goal: Long-range 3D imaging

Strategy:

- Heterodyne detection to capture complex image
- Sweep local oscillator frequency to obtain depth

Conventional LIDAR Processing

LIDAR Forward Model

• MBIR Approach $\hat{r} = \arg \min_{r} \{-\log p(y|r) - \log p(r)\}$

Exact Update for MBIR*

*C.J. Pellizzari et al., "Phase-error estimation and image reconstruction from digital-holography data using a Bayesian framework", J. Opt. Soc. Am., 2017

Exact Update for MBIR*

*C.J. Pellizzari et al., "Phase-error estimation and image reconstruction from digital-holography data using a Bayesian framework", J. Opt. Soc. Am., 2017

Approximate Update for MBIR*

Pellizzari: Assume that $A^H A = I$, so...

E-Step
$$C \leftarrow (I + \operatorname{diag}(\sigma_{W}^{2}/r))^{-1}$$
$$\mu \leftarrow CA^{H}y$$
$$\mathsf{M-Step} \qquad r \leftarrow \arg\min_{r} \left\{ \sum_{i} \left\{ \log r_{i} + \frac{|\mu_{i}|^{2} + C_{i,i}}{r_{i}} \right\} - \log p(r) \right\}$$

- Advantage: Easy to compute
- Disadvantages:
 - Ignores aperture blur X

- Propagates error to μ

*C.J. Pellizzari et al., "Phase-error estimation and image reconstruction from digital-holography data using a Bayesian framework", J. Opt. Soc. Am., 2017 6

Our Update for MBIR

•Our Approach: Approximate C, but find μ exactly

- Advantages:
 - Accounts for aperture blur
 - Error in C doesn't propagate to μ

Our Update for MBIR

•Our Approach: Approximate C, but find μ exactly

- Advantages:
 - Accounts for aperture blur
 - Error in C doesn't propagate to μ
 - Easy to compute

3D-MACE: LIDAR Reconstruction Algorithm

12

- 3D-Multi Agent Consensus Equilibrium (3D-MACE)
 - Solution balances Forward Agents and Prior Agents

Forward Agents

- CNNs trained on natural images
- Applied to 2D slices of 3D image

• Integrate multi-look data as individual agents

3D-MACE: LIDAR Reconstruction Algorithm

- 3D-Multi Agent Consensus Equilibrium (3D-MACE)
 - Solution balances Forward Agents and Prior Agents

• Solved by iterative fixed-point algorithm*

•
$$r \leftarrow (1 - \rho)r + \rho(2G - I)(2F - I)r$$

*G. T. Buzzard et al., "Plug and play unplugged: Optimization Free Reconstruction using Consensus Equilibrium", SIAM J. Imaging Science., 2017

Results – Simulated 2D Bar Chart

Reconstructions with 4 looks

Traditional Reconstruction

$$\hat{r} = \frac{1}{4} \sum_{\ell} |A^H y_{\ell}|^2$$

MACE Solution (No aperture model) MACE Solution (With aperture model)

Results – Simulated 3D Scene

Reconstructions with 8 looks

Traditional Reconstruction $\hat{r} = \frac{1}{8} \sum_{\ell} |A^{H}y_{\ell}|^{2}$

3D-MACE Solution (No aperture model) 3D-MACE Solution (with aperture model) 12

Takeaways

3D-MACE Algorithm

- Fast EM-updates for removing aperture blur
- Represent each look by an EM-Agent
- Prior model is implemented with CNN

Results:

- Speckle-reduced images
- Resolution beyond diffraction limited resolutions

Thank You

Contact: allen450@purdue.edu

TONY ALLEN