The Use of Graph Theory in Forensic Footwear Analysis

Tony Allen

Advisors: Dr. Martin Herman, Dr. Hariharan Iyer Information Technology Lab Federal and Industrial Relations Office

NIST SURF Colloquium, 2017

Tony Allen

National Institute of Standards and Technology

A Crash Course on Graph Theory 0000 An Examp

Summary

Outline

- Background
- Our Approach
- A Crash Course on Graph Theory
 Definitions and Examples
- 3 An Example

Tony Allen

National Institute of Standards and Technology

Problem Statement ●0 ○○○	A Crash Course on Graph Theory 0000	An Example	
Background			

2 A Crash Course on Graph TheoryDefinitions and Examples

3 An Example

Tony Allen

National Institute of Standards and Technology

Problem Statement ○● ○○○	A Crash Course on Graph Theory 0000	An Example	
Background			
Motivation			

National Institute of Standards and Technology

Tony Allen

Problem Statement ○● ○○○	A Crash Course on Graph Theory 0000	An Example	
Background			
Motivation			

Commonly found in crime scenes

National Institute of Standards and Technology

Tony Allen

Problem Statement ○● ○○○	A Crash Course on Graph Theory 0000	An Example	
Background			
Motivation			

- Commonly found in crime scenes
- Often have distinctive features sole patterns, wear, imperfections

National Institute of Standards and Technology

The Use of Graph Theory in Forensic Footwear Analysis

Problem Statement ○● ○○○	A Crash Course on Graph Theory 0000	An Example	
Background			
Motivation			

- Commonly found in crime scenes
- Often have distinctive features sole patterns, wear, imperfections
- Current practices are subjective

National Institute of Standards and Technology

Problem Statement ○○ ●○○	A Crash Course on Graph Theory 0000	An Example	
Our Approach			

2 A Crash Course on Graph TheoryDefinitions and Examples

3 An Example

Tony Allen

National Institute of Standards and Technology

Problem Statement ○○ ○●○	A Crash Course on Graph Theory 0000	An Example	
Our Approach			

National Institute of Standards and Technology

The Use of Graph Theory in Forensic Footwear Analysis

Problem Statement	A Crash Course on Graph Theory	An Example	
	0000		
Our Approach			

Three important steps:

1. Develop tool to extract features

National Institute of Standards and Technology

Tony Allen

Problem Statement ○○ ○●○	A Crash Course on Graph Theory 0000	An Example	
Our Approach			

Three important steps:

- 1. Develop tool to extract features
- 2. Develop methods for computing high performance comparison scores

National Institute of Standards and Technology

Three important steps:

- 1. Develop tool to extract features
- 2. Develop methods for computing high performance comparison scores
- 3. Build database of impressions for testing and training algorithms

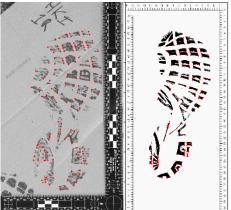
National Institute of Standards and Technology

The Use of Graph Theory in Forensic Footwear Analysis

Three important steps:

- 1. Develop tool to extract features
- 2. Develop methods for computing high performance comparison scores
- 3. Build database of impressions for testing and training algorithms

National Institute of Standards and Technology

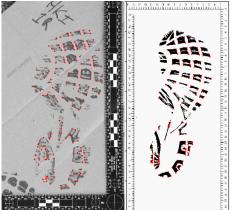

Tony Allen

A Crash Course on Graph Theory

An Examp

A Comparison Score — Distance

How to compute distance measure:

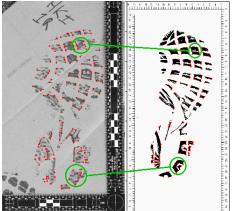


National Institute of Standards and Technology

A Crash Course on Graph Theory

A Comparison Score — Distance

1. Find features common in both impressions.

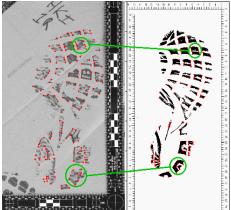


A Crash Course on Graph Theory 0000

An Examp

A Comparison Score — Distance

1. Find features common in both impressions.



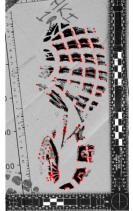
National Institute of Standards and Technology

A Crash Course on Graph Theory

A Comparison Score — Distance

2. Use these features to align the prints.

Tony Allen


National Institute of Standards and Technology

Problem Statement
000
Our Approach

A Crash Course on Graph Theory

A Comparison Score — Distance

2. Use these features to align the prints.



Problem Statement
000
Our Approach

A Crash Course on Graph Theory

A Comparison Score — Distance

3. Calculate distance between features after alignment.

Problem Statement O O Our Approach A Crash Course on Graph Theory

An Examp

Summary

A Comparison Score — Distance

But remember, this process needs to be accurate, repeatable, and reproducible!

That's where Graph Theory comes in!

Tony Allen

National Institute of Standards and Technology

Problem Statement 00 000	A Crash Course on Graph Theory ●000	An Example	
Definitions and Examples			
• • •			

Outline

Tony Allen

- Problem Statement
 Background
 Our Approach
- 2 A Crash Course on Graph TheoryDefinitions and Examples

3 An Example

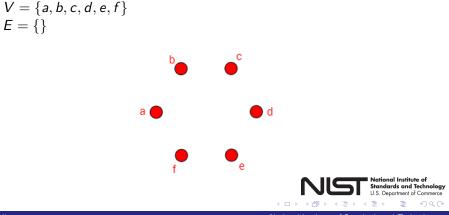
National Institute of Standards and Technology

Problem	
00	

Definitions and Examples

Definition

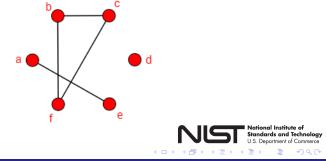
Tony Allen


A graph G = (V, E) is comprised of a set of vertices V and a set of edges E, which are 2-element subsets of V.

National Institute of Standards and Technology

Problem Statement 00 000	A Crash Course on Graph Theory 0●00	An Example	
Definitions and Examples			
Definition			

A graph G = (V, E) is comprised of a set of vertices V and a set of edges E, which are 2-element subsets of V.

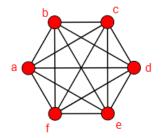

Tony Allen

National Institute of Standards and Technology

Problem Statement 00 000	A Crash Course on Graph Theory 0●00	An Example	
Definitions and Examples			

A graph G = (V, E) is comprised of a set of vertices V and a set of edges E, which are 2-element subsets of V.

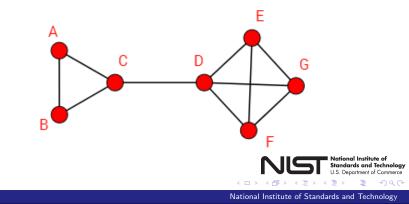
$$V = \{a, b, c, d, e, f\}$$
$$E = \{ae, bc, bf, cf\}$$


National Institute of Standards and Technology

The Use of Graph Theory in Forensic Footwear Analysis

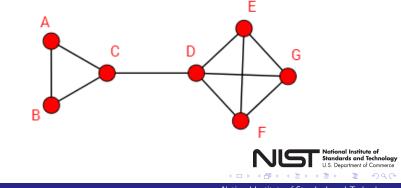
Problem Statement 00 000	A Crash Course on Graph Theory 0000	An Example	
Definitions and Examples			

A graph G = (V, E) is comprised of a set of vertices V and a set of edges E, which are 2-element subsets of V.


 $V = \{a, b, c, d, e, f\}$ E = {ab, ac, ad, ae, af, bc, bd, be, bf, cd, ce, cf, de, df, ef}

Problem Statement 00 000	A Crash Course on Graph Theory ००●०	An Example	
Definitions and Examples			

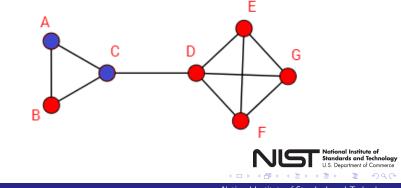
Example (Social Networks)


Let $V = \{Alice, Bob, Charlie, David, Eve, Fred, Grace\}$ and let uv be an edge if and only if person u and person v are friends.

Tony Allen

Problem Statement	A Crash Course on Graph Theory	An Example	Summary
00	0000		
Definitions and Examples			
Definitions and Examples			

A *clique* is a subset of vertices in which each pair of distinct vertices are adjacent.

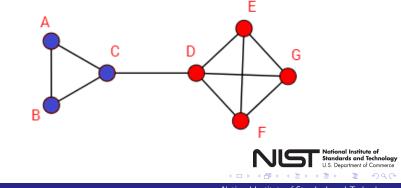


Tony Allen

National Institute of Standards and Technology

Problem Statement	A Crash Course on Graph Theory	An Example	Summary
00	0000		
Definitions and Examples			
Definitions and Examples			

A *clique* is a subset of vertices in which each pair of distinct vertices are adjacent.

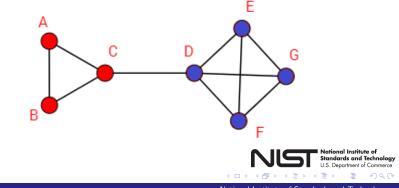


Tony Allen

National Institute of Standards and Technology

Problem Statement	A Crash Course on Graph Theory	An Example	Summary
00	0000		
Definitions and Examples			
Definitions and Examples			

A *clique* is a subset of vertices in which each pair of distinct vertices are adjacent.



Tony Allen

National Institute of Standards and Technology

Problem Statement	A Crash Course on Graph Theory	An Example	
00 000	0000		
Definitions and Examples			

A *clique* is a subset of vertices in which each pair of distinct vertices are adjacent.

Tony Allen

National Institute of Standards and Technology

A Crash Course on Graph Theory 0000

An Example

Summary

How does this apply?

Definiton - Product Graph:

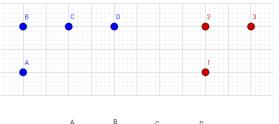
Given two configurations of features,

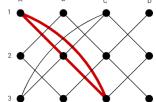
$$P = \{p_1, ..., p_n\}$$
 and $Q = \{q_1, ..., q_m\},$

we construct a product graph with vertex set

$$V = \{p_1q_1, ..., p_1q_m, ..., p_nq_1, ..., p_nq_m\}.$$

Two vertices $p_i q_j$ and $p_k q_\ell$ are connected if and only if the distance between points p_i and p_k is equal to (within a margin of error) the distance between points q_i and q_ℓ .


Tony Allen


A Crash Course on Graph Theory 0000

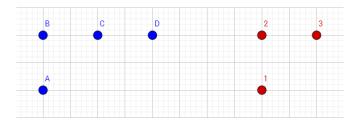
An Example

Summary

A Small Example

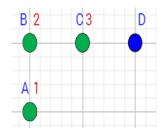
National Institute of Standards and Technology

Tony Allen


What does a clique in the product graph represent?

National Institute of Standards and Technology

What does a clique in the product graph represent? A set of features in P that are congruent to a set of features in Q.



National Institute of Standards and Technology

Tony Allen

What does a clique in the product graph represent?A set of features in P that are congruent to a set of features in Q.We can then align the impressions by this congruence.

National Institute of Standards and Technology

The Use of Graph Theory in Forensic Footwear Analysis

A Crash Course on Graph Theory 0000

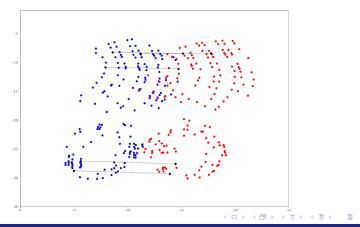
An Example

Summary

Shoe Example

0. Create product graph.

Tony Allen

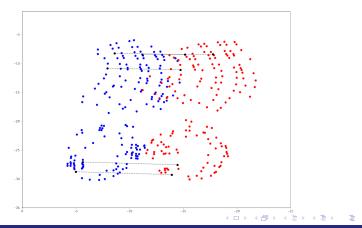

National Institute of Standards and Technology

Problem	

A Crash Course on Graph Theory 0000 Summary

Shoe Example

1. Find a large clique in the product graph.

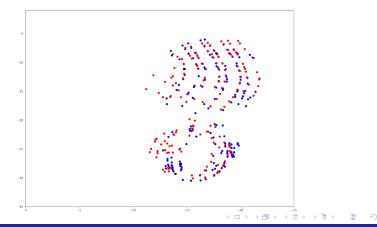


Tony Allen

National Institute of Standards and Technology

Problem Statement 00 000	A Crash Course on Graph Theory 0000	An Example	
Shoe Example			

2. Align the impressions by the clique correspondence.



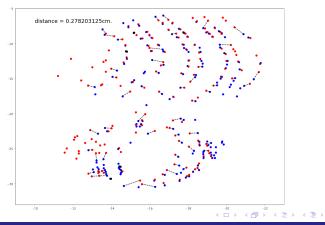
National Institute of Standards and Technology

The Use of Graph Theory in Forensic Footwear Analysis

Problem Statement 00 000	A Crash Course on Graph Theory 0000	An Example	
Shoe Example			

2. Align the impressions by the clique correspondence.

Tony Allen


National Institute of Standards and Technology

Problem	

A Crash Course on Graph Theory 0000

Shoe Example

3. Compute distance between features.

Tony Allen

National Institute of Standards and Technology

A Crash Course on Graph Theory 0000

An Examp

Summary

Improvements and Future Work

- Normalize distance score for comparison
- Investigate other similarity scores
- Allow for error in classifying characteristics
- Implement machine learning to test and develop scoring systems

National Institute of Standards and Technology

Tony Allen

Tony Allen

- There is a need for forensic footwear comparisons to be objective and reproducible.
- The distance between impressions is just one similarity measure.
- But Graph Theory is a helpful tool in computing this (and other!) scores.

National Institute of Standards and Technology

A Crash Course on Graph Theory 0000

An Examp

Summary

Special Thanks to:

Dr. Martin Herman Dr. Hari Iyer

and to you for listening!

National Institute of Standards and Technology

The Use of Graph Theory in Forensic Footwear Analysis