
MA 460 Supplement: spherical geometry

Donu Arapura

Although spherical geometry is not as old or as well known as Euclidean geometry, it
is quite old and quite beautiful. The original motivation probably came from astronomy
and navigation, where stars in the night sky were regarded as points on a sphere. To
get started, let S be the sphere of radius 1 centered at the origin O in three dimensional
space. Using xyz coordinates, we can place O at (0, 0, 0), which means x = y = z = 0,
then S is given by x2 + y2 + z2 = 1. Points will now be understood as points on S.
A line is now a great circle. This is a circle obtained by intersecting S with a plane
through O. (When we need to talk about lines in the usual sense, we will call them
ordinary lines or straight lines. We also occasionally refer to a great circle as a spherical
line when we want to be absolutely clear.) Given points P and Q, the spherical distance
between them is the angle ∠POQ measured in radians which we use from now on for
all angles (recall π radians = 180◦). Given points A,B,C on S, we define the spherical
angle ∠ABC as follows. Let ` be the ordinary line in space tangent to the spherical line
(i.e. circle) AB at B, similarly let m be tangent to CB at B. Then ∠ABC is the angle
between ` and m. A (spherical) triangle is given by points A,B,C and (spherical) line
segments AB,AC,BC connecting them. We can define the area of 4ABC the way we
would in a calculus class as an integral, although we will generally use more elementary
methods. The one fact we will need from calculus, however, is that area(S) = 4π.

We won’t use an axiomatic approach, but instead we combine analytic and other
methods. However, once we establish a collection of basic facts, we can sometimes argue
as we did in Euclidean geometry.

1 Elementary properties

Let us compare some of the basic facts from McClure with what is happening in spherical
geometry. BF6 “the whole is the sum of the parts” still holds here and for any other
kind of geometry. BF10 on the existence of midpoints is true and we prove it next. (To
avoid conflicting with earlier theorem numbers, we start with theorem 100.)

Theorem 100. If AB is a spherical line segment from A to B there is a point M on
AB, such that the spherical distances between A and M , and B and M , are equal.
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Proof. AB is given by an arc on great circle on a plane P containing A,B, and O. Let
M be the point on this arc meeting the ray on P which bisects the angle ∠AOB.

BF12 also works (with a curious twist):

Theorem 101. Given a spherical line ` and a point A not on the line, there exists a
line m which meets ` at right angles (π/2 radians) in two points.

Proof. Let ` be given by intersecting a plane L with S. Choose a plane M through A
which is perpendicular to L, and let B be the point where it meets L. Let m be the
intersection of M with S. This will be perpendicular to ` at both points of intersection.

BF7 “through two points there is one and only one line” is partly true but not
completely. It is true that through any pairs of points there is a spherical line, but there
may be more than one. Let us explain. Given A, the antipode A′ is the point on the
opposite side of S where the straight line AO meets it. In coordinates if A = (x, y, z),
A′ = (−x,−y,−z). Any plane through the ordinary line AA′ passes through O, and
therefore cuts out a great circle. Therefore, there are infinitely many lines through A
and A′.

Theorem 102. Given points A and B there exists a spherical line containing them. If
A and B are antipodes, there are infinitely many lines containing them. If A and B are
not antipodes, then the line is unique.

Proof. A spherical line containing A and B exists because by intersection S with the
plane L passing through O A and B. If A and B lie on two spherical lines, then O,A,B
lie on two planes L and M . Then these points will lie on the straight line given by the
intersection of L and M . This means that A and B are antipodes. Conversely, if A and
B are antipodes, then all three points lie on a straight line `. There are infinitely many
planes containing `.

Finally, let us take a look at BF13 “Given a line ` and a point P not on `, it is
possible to draw line through P parallel to `”. This turns out to be completely false.

Theorem 103. Any two spherical lines meet.

Therefore there are no parallel lines at all. Thus spherical geometry is really quite
different, and these differences are interesting. Nevertheless, we will see that many things
do work as before.
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2 Spherical triangles

We now want to summarize some basic facts about spherical triangles, that we can use in
homework. First, we need to be bit more precise on what we mean by a triangle. Given
three points A,B,C, and spherical lines connecting them, it divides the sphere S into
two regions. We require that one of these regions has all internal angles strictly less than
π. We regard these angles as the angles of the triangle, and this region as the inside of
the triangle. As we will see we have big difference with Euclidean geometry: the sum of
angles of a spherical triangle is never π radians (180◦). On the plus side it will turn out
that many basic facts do still hold. First we need to give the definition. Two spherical
triangles 4ABC and 4DEF are congruent if the corresponding lengths and angles are
equal. To be more explicit AB = DE,AC = DF etc. Then we show that SSS, SAS,
ASA, stated exactly as before, still hold. Surprisingly, there is completely new fact AAA,
which says that if two triangles are congruent if their corresponding angles are equal.
This is false in Euclidean geometry because we can have similar triangles which are not
congruent. Let us see how to use these facts.

Problem Prove that a spherical triangle has two equal sides if and only if it has two
equal angles.

This is the analogue of theorem 5 of McClure. We can carry out one half of the
proof almost word for word. Let 4ABC be a triangle such that AC = BC. Let M
be the midpoint of BC which exists by theorem 100. Choose a line AM using theorem
102. Using SSS, we can conclude that 4AMC and 4BMC are congruent. Therefore
∠A = ∠B.

Conversely, suppose that ∠A = ∠B, we have to show that the opposite sides are equal.
The old proof, which relied on the fact that the sum of the angles of a triangle is 180◦,
no longer works. We use a completely new strategy. The argument is short but possibly
confusing in that it uses a new tool AAA, and it uses it in a tricky way. Comparing
4ABC and 4BAC, we see that ∠A = ∠B, ∠B = ∠A and of course ∠C is the same.
Thus 4ABC and 4BAC are congruent. Note that this congruence interchanges A and
B. The conclusion is that AC = BC.

3 Sum of angles of a triangle

Theorem 3 of McClure that the sum of angles of a triangle is π radians is false. The
correct replacement for it is somewhat surprising.

Theorem 104 (Gauss-Bonnet). If 4ABC is a spherical triangle,

∠A+ ∠B + ∠C = π + area(4ABC)

Corollary 1. Two congruent spherical triangles have the same area.
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Gauss and Bonnet proved a much more general theorem valid for any curved surface.
The special case above has an elementary proof that we will explain. We start by
explaining what a lune is. It is basically a spherical polygon with 2 sides. Of course
such a thing cannot exist in the Euclidean plane, but it can on S. Given two antipodal
points A and A′, choose any pair of great circles through A and A′. This divides S into
4 regions each of which looks like an orange slice. These are called lunes. Given a lune,
choose a point B and C on each side, the angle ∠BAC is the angle of the lune.

Theorem 105. The area of a lune L with angle α is 2α.

Proof. This is easy enough using formulas from calculus, but we prefer to give a more
self-contained proof. Suppose that α = 2π/q, where q is an integer. Then we subdivide
the sphere into q lunes each with angle 2π/q. Therefore the area of a single lune is 1/q
times the area of S, which is 4π/q = 2α. Suppose that α = 2π(p/q), where p and q
are integers, then again of Lα the area is p times the area of L2π/q. So once again the
formula holds. In general, we can write α = 2π lim rn, where rn is a sequence of rational
numbers. Then areaLα = limn→∞ areaL2πrn = lim 2πrn = 2πα.

Proof of theorem 104. Let A′, B′, C ′ be the antipodes of A,B,C respectively. They form
a triangle with the same area. Let LA be the lune bounded by the lines AB and AC and
containing B and C. Similarly, let LB and LC be the lunes containing 4ABC bounded
by BA,BC and CA,CB respectively. Let L′A, L

′
B, L

′
C be the antipodal lunes. These

contain 4A′B′C ′. If we remove 4ABC from LB and LC , and 4A′B′C ′ from L′B and
L′C , we get non overlapping regions which cover S i.e.

S = LA ∪ (LB −4ABC) ∪ (LC −4ABC) ∪ L′A ∪ (L′B −4A′B′C ′) ∪ (L′C −4A′B′C ′)

4



A

A

B
C

L
A

’

L

Therefore

area(S) = area(LA) + [area(LB)− area(4ABC)] + [area(LC)− area(4ABC)]

+area(L′A) + [area(L′B)− area(4A′B′C ′)] + [area(L′C)− area(4A′B′C ′)]
which implies

4(∠A+ ∠B + ∠C)− 4area(4ABC) = 4π

Whence the theorem.

4 Polar triangles

Our goal is to prove spherical ASA and AAA assuming SAS and SSS. We will finish
the proof of the last two statements in the next section. The proof is based on a nice
geometric construction. Given a spherical line ` obtained by intersection S with a plane
L, let m be the straight line through O perpendicular to L. m will intersection S in two
points called the poles of ` For example, the poles of the equator z = 0 are the north
and south poles (0, 0,±1). We have

Theorem 106. Suppose that ` is a spherical line and P is a point not on `.
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(a) If P a pole of `, then for any point Q on `, the spherical distance PQ = π/2.

(b) Suppose that for two points Q1, Q2 on ` we have PQ1 = π/2 and PQ2 = π/2 then
P is a pole of `.

(c) Suppose that P is a pole of ` and Q1, Q2 are on `, then Q1Q2 = ∠Q1PQ2.

Proof. If P is a pole then, essentially by definition, PQ = ∠POQ = π/2.
Now suppose that we have two points Q1, Q2 as in the last statement. The conditions

PQi = π/2 for i = 1, 2 tell us that OP is perpendicular to the plane L containing O,Q1

and Q2. Since ` is the intersection of L with S, P must be a pole.
This proves (a) and (b). Item (c) will be a homework problem.

Given a spherical triangle 4ABC, the polar triangle 4A′B′C ′ is the triangle with A
a pole of B′C ′ on the same side as A′, B a pole of A′C ′ on the same side as B′, and C a
pole of A′B′ on the same side as C ′.

Theorem 107. If 4A′B′C ′ is the polar triangle to 4ABC, then 4ABC is the polar
triangle to 4A′B′C ′.

Proof. By assumption, B is the pole of A′C ′. Therefore A′B = π/2 by part (a) of the
previous theorem. Similarly, A′C = π/2. Applying the part (b) of last theorem, we find
that A′ is the pole of BC on the same side as A. Similarly B′ and C ′ are poles of AB
and AB on the appropriate sides.

Theorem 108. If 4A′B′C ′ is the polar triangle to 4ABC, then ∠A+B′C ′ = π.

Proof. Extend the lines AB and AC so that they meet B′C ′ in points D and E.

A

B C

D E C’B’

Then B′E = C ′D = π/2 by theorem 106 (a). Therefore B′E + C ′D = π. We can
write B′E + C ′D = B′C ′ + DE. Theorem 106 (c) implies DE = ∠A. Combining these
equations gives

B′C ′ + ∠A = π

The next result assumes spherical SSS which we will prove later.
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Theorem 109 (AAA). If two spherical triangles have equal angles, then they are con-
gruent.

Proof. Let 4ABC and 4DEF have ∠A = ∠D etc. Let 4A′B′C ′ and 4D′E ′F be the
polar triangle. By theorem 108,

B′C ′ = π − ∠A = π − ∠D = E ′F ′

etc. So by SSS 4A′B′C ′ is congruent to 4D′E ′F ′. Therefore they have the same angles.
Now theorem 107 implies that 4ABC and 4DEF are the polar triangles of 4A′B′C ′
and 4D′E ′F ′. Thus we can apply theorem 108 with roles reversed to get

BC = π − ∠A′ = π − ∠D′ = EF

etc. So the original triangles are congruent.

The following will be left as a homework problem.

Theorem 110 (Spherical ASA). If two spherical triangles have two equal angles and the
included sides are also equal, then the two triangles are congruent.

5 Spherical trigonometry

The goal in this section will be to prove the spherical versions of SSS and SAS using
analytic geometry and trigonometry. So it will have a different flavour from what we
have been doing up to now. The usual version of SSS can be deduced from the law of
cosines:

Theorem 111. If 4ABC is a Euclidean triangle with sides a, b, c opposite A,B,C.
Then

c2 = a2 + b2 − 2ab cos∠C

This tells us that

∠C = cos−1
c2 − a2 − b2

2ab

with similar formulas for the other two angles. Thus the sides determine the angles.
The trick is to establish a spherical version of this. We start with a right triangle and
generalize Pythagoras’ theorem and formulas for computing sines and cosines of angles.
The new statement may look unrecognizable, but keep in mind that everything including
lengths are now angles

Theorem 112 (Spherical Pythagoras). Let 4ABC be a spherical triangle with ∠C =
π/2. Let a, b, c be the lengths of sides opposite to A,B,C. Then

cos c = cos a cos b (1)
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cos∠A =
cos a sin b

sin c
(2)

sin∠A =
sin a

sin c
(3)

Proof. After doing a rotation, we can assume that C = (0, 0, 1) and that A lies on the
xz-plane. Since BC is perpendicular to AC, B must lie on the xy-plane. Therefore, A =
(α1, 0, α3) and B = (0, β2, β3) for some values α1, . . .. Since the spherical distance from A
to C is b, we must have A = (± sin b, 0, cos b). For similar reasons, B = (0,± sin a, cos a).
Since A and B are unit vectors, cosine of angle between A and B, which is exactly cos c,
is given by the dot product

cos c = 0 + 0 + cos b cos a

The proof of the second equation is a bit confusing and may be skipped. First, we
need to interpret ∠A in a convenient way. This is the angle between the spherical lines
AB and AC. This is the same thing as the angle between the plane spanned by A and
B and the xz-plane. This is also equal to the angle between normal vectors to these
planes, provided that these lie in the same half space (removing the xz divides R3 into
half spaces y > 0 and y < 0). By definition the vector cross product A×B is normal to
the first plane. Recall that the length of this vector is the product of lengths of A and B
with the sine of the angle between them which is sin c. This is oriented by the right hand
rule. The usual formula that we learn in for example Math 261, involving determinants,
allows us to compute this vector as

A×B = (− cos b sin a,− sin b cos a, sin b sin a)

For the normal to the xz-plane, we use N = (0,−1, 0). Taking the dot product (A×B)·N
yields sin b cos a. On the other hand, the product is the lengths of (A × B) and N and
cos∠A. Setting these equal gives

sin b cos a = sin c cos∠A

For the third equation, we use the trigonometric identity sin2θ + cos2 θ = 1. This
together with (2) implies

sin2∠A =
sin2 c− cos2 a sin2 b

sin2 c
=

1− cos2 c− cos2 a sin2 b

sin2 c

Now substitute (1) to get

sin2∠A =
1− cos2 a cos2 b− cos2 a sin2 b

sin2 c
=

1− cos2 a

sin2 c
=

sin2 a

sin2 c
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Theorem 113 (Spherical law of cosines). Let 4ABC be a spherical triangle with sides
a, b, c opposite A,B,C. Then

cos c = cos a cos b+ sin a sin b cosC

Proof. We drop a perpendicular from A to the line CB, which is justified by theorem
101. Let D be the point of intersection. Let x and h be the spherical distances from D
to C and A respectively. Then a − x is the distance from D to B. Applying theorem
112 to 4ADB shows that

cos c = cosh cos(a− x) = cosh cos a cosx+ cosh sin a sinx (4)

The last equality follows from trigonometry. Now applying theorem 112 to 4ACD and
rearranging terms gives

cosh sinx = cosC sin b (5)

cosx cosh = cos b (6)

Substituting the last two equations into (4) proves that

cos c = cos a cos b+ sin a sin b cosC

Theorem 114 (Spherical SSS). If two spherical triangles have equal corresponding sides,
then they are congruent.

Proof. Let 4ABC be a triangle. Theorem 113 allows us to solve for the cosines of
∠A,∠B,∠C using just the lengths of the sides. Since these angles lie strictly between 0
and π, the cosines determine the angles. Therefore we can recover ∠A,∠B,∠C just in
terms of the lengths of the sides. In particular, any two triangles with equal sides would
also have equal angles, and would be therefore be congruent.

Theorem 115 (Spherical SAS). If two spherical triangles have two equal sides and the
included angles are also equal, then the two triangles are congruent.

Proof. By theorem 113 the third sides opposite the included angles are also equal. Now
we can apply theorem 114 to conclude that the triangles are congruent.
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