AG Notes 2024

1. Introduction

Roughly:

- An $n \operatorname{dim}^{\prime} l$ man. foll is a space which looks loally like \mathbb{R}^{n}.
- A Riemann surfiee is a sparn which looks coclly like C
- An algebiaire vority ome an alg. cloud firld k is a space whid looks locmly like an affina voitf (Revieund (abe.)

A fer quortions:
Q1 whif doar "loalf look lik" mem?
Q2 what' te diffinco b-tweer - 2.dinis manfoll at a Riem. auf?

One way t ansmer $Q \mid$ is pauly topologiall.

Dod An n.dril topologial nanifild is a (metrizabl) topologial spane
$X \quad$ s.E $\forall x \in X, J$ nbhl $x \in C \underset{\text { homeo }}{\sim} B_{a l l}<\mathbb{R}^{n}$ (This is callal a chart.)

Althougt pracion, this misses th fact that on a manfll, om miglt want to talk obab C^{∞} fantinu, al on c° Riem. Surf. on migll wont holunoph.e function. Fiinlly when worbiy w.th alg. varuth the Zaristi top is so coarson that a purle topologl def is prelly much uouless.

In orler to male a bettor difintion, we wont to specify a distinguidul collo.be of functus a oper s.bace 1 x wh.d correspad $t C^{\alpha}$ holomuephic/rogalar functiar on the locil modls.
2. Sheares

Lut X b a topological space and k a field.
Def A preshy of k-vachl tunction F. is an assigut to each open $U \subset X$.
$f(u) \subseteq \operatorname{Maps}(u, k)$
whide is cloc-l unle rastrict
․e. $f \in F(l), \quad v \subset u, \Rightarrow f(v \in F(v)$
Det A shef of $k-v-l u d$ fath 7 \therefore a preslof s.t $\forall U$ al ope coven $\{U, i$ if $U, f \in F(u) \ll$ $\forall i, f l_{u .} \in F\left(l_{i}\right)$
The ilen is the condifon $f \in F(u)$ can be chould loolly.

Ex !. Let $x=\mathbb{R}, \quad J(u)=$ const. ful. Clearls, F is a preshef. Is it a shef.?
$E_{x} 2$ leb x b. arbifrar>.
$C(U)=$ continn finhsis $f U \rightarrow \mathbb{R}$.
This is a shof becaune continuity is loal.
$\sigma=3$ ld $\quad x=\mathbb{R}^{n}$.

$$
c^{\infty}(u)=c^{\infty} \text { function } u \rightarrow \mathbb{R}
$$

This alse a shef.
GчG $\quad x=\mathbb{C}$,
$\omega(u)=$ holophi. the $u \rightarrow c$.
てhis is a shf.
3. Affin Vanetz

Lf $k=$ els chal ful.
$\mathbb{A}_{k}^{n}=k^{n}$ is ofth spac.

$$
\begin{aligned}
& S \subseteq k\left(x_{1}, . . x_{n}\right)=R \\
& V(S):=\left\{a \in \mathbb{A}_{1:} \mid \forall f \in S, f(0)=0\right\} \\
& G\left(m \in X \subseteq A_{k}^{n},\right. \\
& d(X)=\left\{f_{G} \in \mid \forall a \in X, f(a)=0\right\}
\end{aligned}
$$

A set $x \leq \mathbb{A}^{n}$ is algebiaic. f $X=V(S)$, for some S.
An ided $I \subset R$ is callad radicel

$$
\text { if } f^{n} \in I \Rightarrow f \in I
$$

Thm (H.ilb.t: Nullstallonsatz)
Thare as inverse bijectins

Thm/Def Thare is a topologr $-\mathbb{A}_{\text {. , allel the Zariski }}$ topologr, whose doind sets are preariol the algabraic sets. A basis fo He ope sets is give b_{γ}

$$
\left.\begin{array}{rl}
D(f) & =\mathbb{A}^{n}-V(f) \\
& =\{a \quad \mid \quad f(a) \neq 0
\end{array}\right\}
$$

Cine a cluend ($=a l_{\text {g-bm }}$) sut X, we give the indmel toprogr x is clled irraduc.ble of it us unt the union of 2 propa cluerl sub.
Th H. Ib. Null. Caf $\frac{X \text { is irral. } \Leftrightarrow d(X) \text { is prion }}{}$
Su we han a bijection
$\left\{\begin{array}{l}\text { irreal closel } \\ \text { set. }\end{array} \underset{\mathbb{A}_{k}^{n}}{\underset{V}{v}}\left\{\begin{array}{l}\text { prine ilel } \\ f R ?\end{array}\right.\right.$
Gin X clued, H courdinctering

$$
O(x)=\frac{R}{d(x)} .
$$

This is a finibly gen. reluced k-algabra. It is an intagl donsin - f is irral.

Give $f \in R$, of define a functor called a regular function

$$
\bar{f}: x \rightarrow k \text { by } \bar{f}(a)=f(a)
$$

Gin $g \in d(x)$, wee have $\overrightarrow{f+g}=\bar{f}$ bean $g=0$ an X. Therefor \bar{f} ca be identified w. th k imar of $f \in \theta(x)$. Now suppose X is irral. the $O(x)$ is a domain., so if has a fall of ferutus, $K(x)$, called H function field of X.
let us give $X \subset \mathbb{A}_{\text {n }}^{n}$ fe inlucal topology. The basic open, are give by

$$
D(f)=\{a \in X \mid \quad f(a) \neq 0\}
$$

$f \quad f \in \theta(x)$.

$$
\begin{aligned}
& \text { We emb-l } \quad D(f) \hookrightarrow \mathbb{A}^{n+1} \text { by } \\
& \left(a_{1}, \ldots a_{n}\right) \mapsto\left(a_{1}, \ldots a_{-}, 1 / f\left(a_{1}, \ldots a_{n}\right)\right) \\
& \text { This idenfofins } k \text { imag w.te } \\
& \left\{\left(a_{1}, \ldots a_{n}, a_{\ldots} .\right) \mid\left(a_{1} \ldots a_{n}\right) \in \lambda\right. \text {. } \\
& \left.a_{n+1} f\left(a_{1},-a_{n}\right)=1\right\} \\
& \text { If: coordingt -ij } \\
& \theta(D(t)) \cong \theta(x)(t] /(\delta t-1) \\
& \hat{=} \theta(x)\left[\frac{1}{f}\right] \subset k(x) \\
& \text { if } u=U D(f,) \text { is opa.. effin } \\
& B_{x}(u)=\bigcup \quad(D(f .)) \subset k(x)
\end{aligned}
$$

Essentially by detiontion
Th $u \mapsto \theta_{X}(u) \therefore$ a shenf callal the shaf of regular function or structure sheof θ_{λ}
4. Concrete Ring-d Spaces

Fix a fiell k.
Def A concrah ringed space
Consist, of a space X together
wit a shaf 7 of k-valad funations
s.f. $\quad F(u) \subseteq \operatorname{Map}_{\text {ap }}(u, k)$
\therefore s a sub $k-a(g l-c \quad \forall G$.
Many of the exaph encountral earlin $\left(\mathbb{R}^{n}, c^{\infty}\right), \ldots$ an aff.... vaminh \cdots...... θ_{x} ar ringed spane

Det of morphisu

$$
f:(x, f) \rightarrow(y, b)
$$

between coucref rijgal spuce. is a confinuors mup $f: x \rightarrow>$ s.f.

$$
f^{\top} g=g \text { of } \in f\left(f^{-1} u\right) \forall g \in g(u) \text {. }
$$

This is an isormphisn of f^{-1} is defingl and i's a muiphism.

Let us say $(x, F) \&(y, 8)$ are loalf isomorishic if" 7 ope coum, su..) $f \times \&\left\{v_{i} \zeta f\right\rangle$ uit
$\left(u_{i}, f\right) \cong\left(v_{i}, g\right)$
We can naw detue
Def $A C^{\infty}$ manifull is a concrah ring space $\left(x, C_{x}^{\infty}\right)$ s. $6 \quad x$ is matrizuble al locall is anmeste t $\left(\mathbb{R}^{n}, C^{\infty}\right) \quad(\mathbb{f}-\mathrm{m}=\mathbb{R})$
A Riemann suifaue is a ringel space $\left(X, \theta_{n}\right)$ loclly isomorphic
 funtion, $\quad(k=\mathbb{C})$
Det A prevarict in the sensin of Seres is a rimgl spa $\left(X, \theta_{\lambda}\right)$ s. E evy of has an ofer nbll isorinplin to an affine vorirh,

To be a varrets, we no-l on anclogna of the it aurdorfp. condition.

Sern's thery is deseribal in his pap Faisscaux Algabrigum Colorent, (Coherent Alg=heni Sham). is a predecessor to scheme theory; wh.ch we'll discuss nex.

5 Shear-1
It is conven: enf to defins sheous of things man gouard then functions. Hers is the detinotion

Def Given a fop space X, a presheof of sets, groups, ... is an assignont

$$
x \underset{\circ p-}{\supset} u \longmapsto f(u) \text { a sab, grop, } u
$$

To each pair $U \supseteq V$, a mar, homordism...

$$
\rho_{u v}: F(u) \rightarrow f(v)
$$

su.h thet

$$
\rho_{u n}=i d
$$

$$
\begin{array}{r}
a-d \quad f(u) \xrightarrow{\rho_{u v}} f(v) \\
\operatorname{luw}_{\text {uw }}>f_{v w} f_{v}(w)
\end{array}
$$

commenter fu a-y char: $U \supseteq \cup \supseteq W$ A slicken way t formulet thie is to make Ope- (x) int a cartyg. Them a proshef is just a contruvarint functor $\mathrm{Opara}^{(x)} \rightarrow$ Solt.

In the previous exgh Suv is jinet rastrict.in of funation We w.ll use the samm notat...

Def A preshy F is colled a shaf if $\forall U$ al ope coner $\left\{U_{1}.\right\}$ Gim $f_{i} \sigma f\left(U_{i}\right)$ s.f.

$$
f_{\cdot} \cdot l_{u_{\cdot} \cdot n u_{j}}=f_{j} l_{u_{\cdot} \cdot \cap u_{j}}
$$

\exists a uniqu $f \in f(u)$ s.i

$$
f l_{u_{i}}=f_{i}
$$

All provious exaplen of shoans os sheame \therefore this sonss. We
w.ll treet mure generd excuple nerol.
6. Affine Schem.

Thm/D.f The set $X=S_{p \rightarrow e}$ of prime ided of R has a topology, also callal te Za-iski topology. with basic opons

$$
D(f)=\left\{p \in S_{p}=R \mid f \notin p\right\}
$$

Thie possossel a shef of cummatik $\operatorname{ring} \quad \theta_{x} \ldots, k$

$$
\theta_{x}(D(f)) \cong K\left[\frac{1}{f}\right]
$$

al $\rho_{D(f), D(8 f)}$ the netual
homomorphisms $R\left[\frac{1}{f}\right] \rightarrow R\left[\frac{1}{f g}\right]$
[See Hartshurn pp 70-72 fur detail.J

Th pair $\left(x, \theta_{+}\right)$is callod th affin schom assacialal to R.

It is worthwh.L comparif with the class.al story. If $X \subset \mathbb{A}_{6}^{n}$ is algeb-uir wit k alg, closol. Lot $K=\theta(x)$. Then Hilberf: Nullosallensatz we have a bijiohim botw-a $X \longleftrightarrow$ Maxilud of $\leftrightarrows S_{p a c} R$. The stineta itof of $S_{p=e} k$ can be pullal bacb tu X and it coinciles with the shef f regole functions contructal ea-li.e.

So schere theory va.tly exte.d, theclessich pictur.

