
J

↑ Cup Product ①
-

Given a ringed space (X R and
&

sheames of R-modul . F
,
&,

no define 70pl to be to she f
associated to the proshe
u -> F(a)0r(a) (u)

We have amotel
map

v : H (x
,

7)H °

(x
,
Y)- H(x

,
709)

R(x)

f vg = feg

Given ea cohains

Stin
--ip
(c ((U

,
7) al

(8i0
,

. . (a) c (62,

(GU9(i
.... ipf Sin . -ip 8 p --ipe

1 mmc 2(fug) = = (6)vg + fu(29)
-

Therefor we get acup product
~

v : H (U
,
7) (2

,
8) - 10(

,
FOR



2Cohonologyof
& ②

Last time we stated

d
Thm Fix IP = Pr ,

whe R is no ete.in.
-

The n

(a) Ho (IP
,

O(nL)E RIxo
,

- x&]
n

-
honog poly of dig n
in above variable,

(b) I"(IP
,

O(n1) = 0 for 0
,
d

(1)((IP
,

O(n)) = Ho (IP
,
Oc-n -0 - 11)

*

-

The main idea is use 5
= ch

chology not the standard open

Co u .. = D
+
(X:

The other tick is to conside all the

Ocal at the same time by considering
J

te graded R-model H(8(n) .
Once (a) is ↳ round, wa n.ll so -

that this is a graded S-mahle

~... to sup product wher



③
ht S = R[xr

,
... X- Y

The ech complex is

C (U
,

00(n)) =

⑦ Sc
+ J - ⑦st ... 5)&

X..
M i

, j

S, n . - the complex has longt do
we get

1 emma
H"(8(n)) = 0 Gi) &

-

This is a special ca of (b).
Next me prove (C).

Prop H(0(n7E S as a graded R
-

module .

↑ % . Let T= State) .
St

.

] con

-

be identified math subrangs of T
,
and

One checks that any homogeneous element of
- has n

unique representatio as

L --,
, , . *O



④

where -O
X ↓ S
J

One sees from this that

HCO()) = N Sc+
· Te

= S /

Next me turn to (c)

Prop *
- H(IP

,

O(n)) = S
- n - d - 1

18 : H ( Call = SI)
-
i'm b

-

⑦ R
x

.

"

...
o

Id

T 1jE7

- Spannel
(I ST- < ↳, monucl-

↑ &
~,G som

J
*
0xj

- x l nonneg - exports

id
=⑦ R

x
.

"
-- *

&

ijo



jS
The grading is sun of exponen b .
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