I Cup Product
Given a ringel spem (X, R) al shocur of R.moll. J, g, un efan $7 \otimes_{k}$ \& to b te shof associdel $\&$ He proshel $u \mapsto f(a) \otimes_{p(a)} \&(u)$
We have a natal nip

$$
\begin{aligned}
& v: H^{\circ}(x, 7) \underset{R(x)}{ } H^{\circ}(x, y) \rightarrow H^{\circ}(x, f \circ g) \\
& f \cup g=f \in g \\
& \text { Civen č.ol cohain, } \\
& \left(f_{i, \ldots, i}\right) \in C^{p}(U, F) \quad \text { al } \\
& \left(g_{j_{0}, \ldots j_{a}}\right) \subset c^{q}(u, \&) \\
& (f \cup g)_{i_{0} \ldots i_{p+q}}=\delta_{i_{0}-i_{p}} \otimes g_{i_{p}-i_{p+i}}
\end{aligned}
$$

lemmc $\partial(f \cup g)=\neq(\partial f) \cup g \neq f v(\partial g)$ Theretw wa of a cup product $v: H^{p}(u, f) \otimes K^{q}(u, y) \rightarrow \hbar^{p+q}(u, f \otimes \rho)$

2 Cohonology of \mathbb{T}^{d}
Last time we statud
Thm $F_{i x} \mathbb{P}=\mathbb{P}_{R}^{d}$, when R is noetter..

(b) \quad f' $^{\prime}(\mathbb{P}, \theta(n))=0$ for ${ }^{\prime} \neq 0, d$
$(c) \operatorname{Ht}^{d}(\mathbb{P}, \theta(n)) \cong H^{\circ}(\mathbb{P}, \theta(-n-d-1))^{*}$
The main idereis use č... coholory u.r.f He standa-d opan cone $\mathrm{Ul}_{\cdot}=\mathrm{O}_{+}\left(x_{i}\right)$
The otter trick is to consich all the $O(n)$-t K san $t \cdot m b^{b}$ considen the graled R-molel $\oplus H^{i}(O(n))$. Once (a) is prou-l, wa wll s-e that this is a golel S-moleb w... \quad cup prolurb wher

Let $s=R \varepsilon_{x_{1}}, \cdots x_{-}$)
Th Čッh condly.s
$\left.c^{\prime}\left(\mu, \theta \sigma_{n}\right)\right)=$
$\left.\oplus S \subset \frac{1}{x}.\right] \rightarrow \bigoplus_{i, j} S\left[\frac{1}{\kappa_{1} x_{j}^{\prime}}\right] \rightarrow \cdots S\left[\frac{1}{\pi_{0} \cdots x_{2}}\right]$
Sincs k cuncriz hes lough d, w * 1
lemme $H^{\circ}(\theta(n))=0 \mathrm{f} \cdot>\mathrm{d}$
This is a sreard con f (b).
Nert me prone (a).
Prop $H^{\circ}(\oplus O(n)) \cong S$ as a grabl R modnc.
pf. Let $T=S\left[\frac{1}{n_{0}} \ldots{ }^{\prime}\right]$. $S\left[\frac{1}{\lambda_{1}}\right]$ c.. be ibentifi-l wote sebing, 1 ? , d On. chaks that any horig-neacs alomil of 7 has a unique repoosontafio as

$$
x_{0}^{i} \cdots x_{d}^{i d} f\left(x_{0}, \cdots x_{d}\right)
$$

when no $x_{\text {a }} X f$
On. sees from this that

$$
\begin{aligned}
H^{0}(\theta \theta(n)) & \cong \bigcap S\left(\frac{1}{x}\right) \\
& =S
\end{aligned}
$$

Near me tum to (c)

$$
\begin{aligned}
& \text { Prop } H^{d}(\mathbb{P}, \theta(n)) \cong S_{-n-d-1}^{*} \\
& \underline{p f:} H^{d}(\oplus O(n))=\frac{S\left[\frac{1}{x_{0} \cdots x_{d}}\right]}{i m \partial}
\end{aligned}
$$

$$
\begin{aligned}
& =\bigoplus_{i_{j}<0} R x_{0}^{i} \cdot-x_{d}^{i d}
\end{aligned}
$$

The grading is sun of exponent.
So $H^{d}(\theta(-d-1)) \cong R x_{0}^{-1} \cdots x_{d}^{-1}$

$$
\tilde{z} R
$$

The previous rats giver a

$$
H^{\partial}(\theta(n))=S_{d}=\sum_{\sum i_{k}=d} x_{0}^{i i_{0}} x^{i d}
$$

The cur polar

$$
\begin{aligned}
U: H^{a}(\partial(n)) \times H^{d}(\theta(-n-d-1)) & \rightarrow H^{d}(\theta(-d-1)) \\
& \cong R
\end{aligned}
$$

which on the on the basie atom an given by

$$
\begin{gathered}
\left(x_{0}^{\left.i_{0} \ldots x^{i d}\right) \cup\left(x_{0}^{j_{0}} \ldots x^{i_{d}}\right)}\right. \\
=x_{0}^{i_{0}+j_{0}} \cdots x^{i_{d}+i_{d}}
\end{gathered}
$$

This's induce, on isomorphisin

$$
H^{d}(\theta(-n-d-1)) \cong H^{0}(\theta(n))^{t}
$$

Findly he prone (S).
Prop if $0<i<d$, thon

$$
H^{i}\left(\theta_{\mathbb{P}^{d}}(n)\right)=0
$$

pf Setting $x_{d}=0$ givas a hyperplam $H \cong \mathbb{P}_{R}^{d-1}$. W e hame an exa.et sel.

$$
0 \rightarrow \theta_{\mathbb{P}^{d}}(-1) \rightarrow \theta_{\mathbb{P}^{d}} \rightarrow \theta_{H} \rightarrow 0
$$

Te-sorin....th $\theta(a)$ gives

$$
0 \rightarrow \theta_{\mathbb{R}^{d}}(n-1) \rightarrow \theta_{\mathbb{P}^{d}}(n) \rightarrow \theta_{\mathbb{R}^{l-1}}(n) \rightarrow 0
$$

$\beta^{\prime} \quad$ inluefon

$$
H^{i}\left(\theta_{\mathbb{R}^{d-1}}(n)\right)=0,0<i<d-1
$$

We aleo how

$$
\begin{aligned}
H^{0}\left(\theta_{\mathbb{1}},(n)\right) & \rightarrow H^{0}\left(\Theta_{\mathbb{P} d-1}(n)\right. \\
\|_{1} & \longrightarrow R\left[\sum_{x_{0}}, \cdots x_{l-1}\right]
\end{aligned}
$$

is suriastim, at dully

$$
\begin{aligned}
A^{d-1}\left(O_{p^{d-1}}(a)\right) & \rightarrow 1^{d} d\left(\theta_{p^{d}}(n)\right) \\
s_{-n-d-1} & \rightarrow s_{-n-1}+s_{-1}
\end{aligned}
$$

is injectine.
T he \sim for

$$
(*) \quad H^{\text {Then }}\left(\theta_{\mathbb{P}^{d}}(n)\right) \xrightarrow{x_{d}} H^{\prime}\left(\theta_{\mathbb{p}^{p}}(n)\right)
$$

is an is onorphisz f $0<i<l$
Cla, Every elemont of H S-molle
$M=\bigoplus_{n} H^{\prime}\left(\theta_{\mathbb{P}^{d}}(n)\right)$ is aunhilatal $l_{>}$ a powar of x \& fo $\quad \therefore>0$.
whe combineal w.k (r), thic inphas the pronos.tim.

The claim is equirubet to

$$
(* \infty) M\left[\frac{1}{x_{l}}\right]=0 .
$$

Sines loclizath is arait.
$1 t$ is enongh t sher

$$
H^{\circ}\left(C^{\prime}(u, \theta \theta(1))\left[\frac{1}{x l}\right]\right)=0 \text { fu } i>0
$$

β ut

$$
C^{\prime}(u, \theta \theta(u))\left[\frac{1}{x_{k}}\right]=C^{\cdot}\left(\left\{u \cdot n u_{d}\right\}, \theta \theta(a)\right)
$$

Sinm this cumpuh, the corhomuliy

$$
\begin{aligned}
& H^{\prime}\left(\mu_{d}, \theta \Theta(n)\right) \\
& \text { We see this -qulio fi> } 0
\end{aligned}
$$

3 Cohonolog $y-1 \mathbb{P}^{d}$ (cont)
Given a coherent shef 7 on \mathbb{P}_{R}^{d}, s-t $f(n)=F \Theta_{\mathbb{p}^{d}} \theta_{\mathbb{p}^{s}}(n)$

D-f A cohoret shaf F on a sch x is generatel by global suation., or globally gearotl, if $t x \in X$, clume the natural mop

$$
11^{\circ}(x, F) \rightarrow 7_{\pi}
$$

is suriectin.

Thm Let R be notherion rirg.
Lat f be a cokernt $s L a f$ a $\mathbb{P}=P_{R}^{d}$.
Tん。
a) $\forall i \geqslant 0, H^{i}(\mathbb{P}, F)$ is a fin. H_{1}, gunerate R-mold, al $H^{\prime \prime}(\mathbb{P}, F)=0$ when $c>d$.
b) I no, depending on F, sucl ted

$$
\left.\wedge^{-}\right) H^{*}(\mathbb{P}, f(n))=0 \quad \forall \Leftrightarrow>0, n \geqslant n_{0}
$$

$(\because י \cdot) \quad f(n)$ is gemertel b_{y} globsal s.-hu. $f n \geqslant n_{0}$.

Again me biaak the prof inte a serion \& lemmer / prope.
lemma $\mid H^{\circ}(\mathbb{R}, f)=0 \quad f \quad i>d$ if T the čach cougle w.r.t. He staclard come Les lugth d.
lemmin ${ }^{2}$ There exist on exact sey. f colenent sh....

$$
0 \rightarrow \mathbb{Z} \rightarrow \bigoplus_{i=1}^{w} \theta\left(n_{1}\right) \rightarrow F \rightarrow 0
$$

pf Let $S=R\left[x_{0}, \cdots x_{\rho}\right]$ as $\mathrm{L} f$. Then $f=\tilde{\tilde{M}}$, for som fin gon grabl s-mole M.
Chourn genertho. $m_{n}, \in M_{n_{1},}, i=1, \ldots N$. We hame a swio.th

$$
\begin{aligned}
& \oplus S\left(n_{1} \cdot\right) \xrightarrow{f} M \\
& 1 \in S(n, \cdot) \longmapsto m m_{1} .
\end{aligned}
$$

Le $k=k_{0}-(f)$. Then we hom an exat gol.

$$
0 \rightarrow \tilde{\tilde{k}} \rightarrow\left(4 \bar{S}^{(}(x) \rightarrow \tilde{m} \rightarrow 0\right.
$$

er ll
x
(f) $O\left(n_{1}\right)$
port of (a) al (b)(1) fulluw from
Prop 1
(1) $H^{\prime}(\mathbb{P}, 7)$ is f.a.tuly gacabl
(2) if $n \gg 0, H^{+}(\mathbb{P}, f(n))=0, \forall(\cdot>0$
pt w - pera b.k port L_{y} darcaling inchetin on $i^{\text {. . whe }} \dot{c}^{\circ}=\geqslant d+1$, the prop flllas fo lomm 1 .
In gan-al, by lemn 2, we eltan $\Theta H H^{\prime}\left(\theta\left(n+u_{i}\right)\right) \rightarrow H^{\prime \prime}(F(n)) \rightarrow H^{\prime \prime-1}(K(n))$
if follows ${ }^{\prime} y$ inchatio of k peacioul thm tede $H^{\prime \prime}(7)$ ir fin gon. a.d that

$$
\text { it }{ }^{\prime}(f(n))=0 \begin{cases}f & n \gg 0 \\ i>0\end{cases}
$$

Gim a closag pt $\pi \sigma x$, bat m_{x} be h ided shof at x. (wih vodhed structune).

We hour an exalf s.q

Som fint ingendio.t, ane te follong easy feifs
lemma 3 if X is a noefor.e. schon. tern k desconding chain cundition huld, for closel s-ts:
Any chair of closel surl.

$$
\begin{aligned}
& x \geq x, \geq x, \cdots \\
& \text { stribilizas. }
\end{aligned}
$$

lemma 4 If f is a coherent ahed a a rchon X, te supporl

$$
\operatorname{supp}(7)!=\left\{x \in x \mid F_{x} \neq 0\right\}
$$

is closed.

Prop 2 Fur $n \gg 0, \quad F(n) \therefore g(0 l . l l y$ generated.
pf B y Nokeyoure: lom, ifi enuoph t. slew $\quad t^{0}(J(a)) \rightarrow H^{0}\left(y_{x}{ }^{(n)} x_{x} J_{x}^{(n)}\right)$ is surio.tr f all clos-d $x \in x$. and $n \gg 0$.
Gime a clos-l $x \in X$, we cen ahoon n, st. $f\left(n \geqslant n, H^{\prime}\left(\left(m_{x} \cdot f\right)(n)\right)=0\right.$

This implies that

$$
H^{\circ}(f(n)) \rightarrow H^{\circ}\left(J_{*}=2-1 \cdot / m_{n} f(n)\right)
$$

is surgiwetio. Equ.valeatly that

$$
x \notin X_{1}=\bigcap_{n \geqslant n_{1}} \operatorname{supp}\left(f(n) \not / 1^{\sim}(f(n)) \otimes O_{1 p}\right)
$$

if $x, \neq \varnothing$, we con ropent abous argut t chove $x \in X_{1} \backslash X_{2}$, wh

$$
x_{2}=\bigcap_{n \geq n_{2}} \operatorname{sipp}\left(f(n) / H^{*}\left(f(n) \otimes \theta_{\mathbb{P}}\right)\right.
$$

for sa $n_{2}>n_{1}$.

In thei, way, we git a chain

$$
x \underset{\neq}{\supset} x_{1}{ }_{\neq} x_{2} \cdots
$$

which muat eventualf stop of the emptysut

