Poincans' duality

Def An oricufation on an n dimes R-vacfor space U is a choice of a comnooted component of $n^{n} V-$ So?. An ochial besic $V_{1}, \cdots V_{n}$ is positinly orient. I
if $v_{1} n \cdots v_{n}$ is in thegive conpont Ob,arm that an ociontation is etromind $b y$ a nonzoio fob $w: M^{n} V \rightarrow \mathbb{R}$ Namely $\omega^{-1}\left(\mathbb{R}_{+}\right)$give, on orientatur. w.th thir in mind:

Def An $n d i m$ 'l c^{∞} mon.ifll x is orientable if then exirt, a nowhin zaro n. furm cu on X.
Two such form w. detornine the sane ariontate if $\omega_{2}=f$ wr, wh $f>0$ everywh.

Ex A complox manifuld X is orientabe. If $z_{1}=x_{1}+i A_{1}, \cdots z_{n}=x_{i}+i y_{n}$ a holomorohic courdiabi,

$$
w=f d x_{1} \wedge d y_{1} \wedge d_{x_{2}} \wedge \ldots
$$

with $f>0$, $g i$ ives an ariantition.
E_{x} The Mabime strip, ete. are w-ll known $t s$ be nonorisatabe.

Reminders lof $\Sigma^{p}(x)=$ spac- of p-forn. $w=$ have aperator

$$
d: \Sigma^{p}(x) \rightarrow \Sigma^{p-1}(x)
$$

such tue $d^{2}=0$. We detal de Rhan cohoud.ry

$$
1 f_{d R}^{p}(x)=\frac{k n d: \Sigma^{p}(x) \rightarrow \sum^{p+1}(x)}{\therefore d: \sum^{p-1}(x)-\sum^{p}(x)}
$$

Recall derhan's the:

$$
\text { Lt }_{d R}^{p}(x) \cong \underbrace{H^{p}\left(x, R_{x}\right)}_{\text {sh-f cohd mdory }}
$$

We home a strouge furn
Thn (multipli...tn de Rhanit th)
uader te provioul isamoephon, cup prodith on the righ, currsopods to A on the left.

The find thing we noal to racll in intro-tion on manifuld. if
X is a compact orieatad mon.fuld.
ten then is an oparath

$$
\int_{x}: \Sigma^{n}(x) \rightarrow \mathbb{R}
$$

such teo stoke:' Heoren halds

$$
\therefore \quad \int_{x} d \alpha=0
$$

EOur man.folls don't how a boundgy which is u h mog gel

Thm (Poincorn' duality J)
If x is a compact conneat-l orientable n dimensiad man.full, tha we haon on isomorich.s

$$
\mathbb{f}_{d R}^{n}(x) \cong \mathbb{R}
$$

give $b_{y}^{d R} \alpha \mapsto \int_{x} \alpha$.
For any $\begin{gathered}\text { a , }\end{gathered}$

$$
\begin{aligned}
& H_{d e}^{i}(x) \times H_{d R}^{n-i}(x) \rightarrow R \\
& (\alpha, \beta) 1 \longrightarrow \int_{x} \alpha \wedge \beta
\end{aligned}
$$

gives a non degena..at paiving.
Hence

$$
\begin{aligned}
1 f_{d R}^{n-i}(x) & \equiv 1 f_{d R}^{i}(x)^{\pi} \\
& \left(\cong 1 f_{d^{R}}^{\dot{\circ}}(x) \text { noncaronelf }\right) .
\end{aligned}
$$

Ex Le $X=\mathbb{R}^{n} / \mathbb{Z}^{n}$ h th n.torns. τ Then

$$
\mathbb{H}_{d a}^{i}(x) \cong n^{n} \mathbb{R}^{n}
$$

Numer.ialb, paincan' reduout to the mall known iblt.ty $\binom{n}{i}=\binom{n}{n-i}$

2 Prof of Poincaré
Given a poss.bly noncompact man..fll x, l-t

$$
\varepsilon_{c}^{p}(x)=\left\{\alpha \in \sum^{p}(x) \left\lvert\, \begin{array}{c}
\alpha \text { has } \\
\text { compail } \\
\text { suppors }
\end{array}\right.\right\} .
$$

Clo..hy $\quad d\left(\Sigma_{c}^{p}(x)\right) \subset \sum_{e}^{p+1}(x)$
So $\Sigma_{a}^{\cdot}(x) \subset \Sigma^{\prime}(x)$ is a subcophx Datine compefly sepporfel de Rhen
chhondoby h,

$$
H_{c d R}^{p}(x)=1 t^{p}\left(\Sigma_{a}^{0}(x), d\right)
$$

The one computation we nall is
Thm $H_{c d R}^{p}\left(\mathbb{R}^{n}\right)= \begin{cases}\mathbb{R} & \text { if } p=n \\ 0 & \text { of tein. } 30\end{cases}$ (So- Spivak's Diff geom rol I or)

We'll prome a state-ent beth woaker and sfoungr than before

Thu if X is orientle connoel n-manifle, then.

$$
H_{c d s}^{n-i}(x) \cong H_{d k}^{n}(x)^{*}
$$

Defin $e^{p}(u)=\operatorname{Hom}_{\mathbb{R}}\left(F_{c}^{p}(u), \mathbb{R}\right)$
if $u \geq v$, al $\beta \in C^{p}(u)$ $\alpha \in \Sigma_{c}^{p}(V)$, defin

$$
\left.\beta\right|_{V}(\alpha)=\beta\left(\alpha \text { axtal } h_{y} \text { of } u\right)
$$

This make τ^{r} a prashel. (n fuot lemni e^{p} is a shof.

Define $\quad \delta: \tau^{P} \rightarrow C^{P+1}$
$b_{y}(\delta \beta)(\alpha)=(-1)^{p+1} \beta(d \alpha)$ $\sum_{c}^{\hat{p+1}(u)}$ can ignore

Then $\delta^{2}=0$, so me ham a Curplere of sheaces

D-fn

$$
\begin{aligned}
& \mathbb{R}_{x} \rightarrow \tau^{0} \\
& 1 \rightarrow \int_{x}
\end{aligned}
$$

Pulting previoun roinlt, Lgethe shons
(emmi

$$
{ }_{0 \rightarrow} R_{\underset{x}{ }} e^{v} \xrightarrow{\delta} C^{\prime} \xrightarrow{s} \ldots .
$$

is a soft roielutim.
pf f Poinc...: dulihy (2al voni-)
On the onne had

$$
H^{p}\left(x, \mathbb{R}_{x}\right) \cong H_{d R}^{p}(x)
$$

On k other houl

$$
\begin{aligned}
H^{p}(x, \mathbb{R}) & =H^{p}\left(\tau^{0}(x)\right) \\
& \equiv H_{C d R}^{n-p}(x)^{*}
\end{aligned}
$$

3 Riemann Surfucos

Prop if x is a compof (alway comnoth) Riemenn suifin, then
$b_{1}(x)=\operatorname{dim} H^{\prime}(x \mathbb{R})$ is avan. $b_{0}(x)=b_{2}(x)=1$, al all ot
Botti numb a zero
proof The pa...ng

$$
\begin{gathered}
\langle\alpha, \beta\rangle=\int_{x} \alpha_{1 \beta} \\
H^{\prime}(x) x H^{\prime}(x) \rightarrow \mathbb{R}
\end{gathered}
$$

is nundegom.th. L_{y} poinc.m' dels ad sk=w symut...!

So nol une
lommen if A is an $n \times n$ skewsyet. $\overline{\text { m.fr.x. }}$, w.t. nodd, ten $\operatorname{det}(A)=0$.

$$
H^{0}(x)=\left\{f \in C^{\infty}(x) \mid d f=0\right\}=\mathbb{R}
$$

at oter valus follaw from Poincore //
Dof The genus of a compict R.s.

$$
x \text { is } g=\frac{1}{2} \operatorname{dim} H^{\prime}(x)
$$

Eg. $g=2$ for $=$

A walfal obsorvehn is
Cor (f th) The Gul., characterist..

$$
e(x)=\sum(-1)^{i} b_{1}(x)=2-2 g
$$

Next we wout to comp-ah som hulonorstic invariant,
Le $\theta_{x}=$ shef of holomoishie ful.

$$
C C^{\infty}(u) \otimes_{\mathbb{R}} \mathbb{C}=: \tau_{\mathbb{C}}^{\infty}(u)
$$

Give a locl holunorphic coordinet z on U, let

$$
x=\operatorname{Re} z \text { and } y=\ln z \text {. }
$$

$$
d z=d x+i d y \in \sum_{\mathbb{C}}^{1}(u):=\varepsilon^{\prime}(u) \Theta_{\mathbb{R}} \mathbb{C}
$$

anl $d \bar{z}=d x-i d y \in \Sigma_{c}^{\prime}(u)$

$$
z^{\prime, 0}(u)=C_{6}^{\infty}(u) \cdot d z ; \quad \varepsilon^{0,1}(u)=C_{\Phi}^{\infty}(u) d z^{-}
$$

W e extand $d: C_{x, c}^{\infty} \rightarrow \varepsilon_{x, c}^{1}$
Q - lineorly. We splut
$d=\partial+\partial^{-}$, when

$$
\begin{aligned}
& \partial f=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial \eta}\right) l_{z} \in \varepsilon^{1,0} \\
& \frac{\partial}{\partial f}=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i^{\prime} \frac{\partial f}{\partial \eta}\right) d z^{-} \in \varepsilon^{0,1}
\end{aligned}
$$

Prop f is holomoiph.e $\Leftrightarrow \bar{\partial} f=0$
 eq.
lemma $d\left(\theta_{x}\right) \subset \Omega_{x}^{\prime}$
pf Obvions. I/

$$
\begin{aligned}
& \text { we defim } \quad \partial: \Sigma^{1,0} \rightarrow \Sigma_{c}^{2}, \bar{\partial}: \Sigma^{0,1} \rightarrow \Sigma_{c}^{2} \\
& \partial(f d z)=(\bar{\partial}) \wedge d z \\
& \partial(f d \bar{z})=(\partial \delta) \wedge d \bar{z}
\end{aligned}
$$

We again hom

$$
d=2+\bar{\partial}
$$

We not $\varepsilon_{C}^{2}=C_{c}^{\infty} \cdot d z \wedge d z=: \varepsilon^{\prime \prime}$

Thr if $D \subset \subset$ is an opon dist,

$$
\theta(D) \xrightarrow{d} \Omega_{x}^{\prime}(D)
$$

is suriectin.

1 Suppor $\alpha_{\in} \Omega^{\prime}(D)$, th

$$
d \alpha=(\partial+\bar{\partial}) \alpha=\bar{\partial} \alpha=0
$$

Theref

$$
\alpha=d f
$$

b) the Poincorn' lomm.

Homane, we must how $\bar{\partial} f=0$.
Theref $f \in O(D)$
Cur we have on exaet sequand

$$
0 \rightarrow \mathbb{C}_{x} \rightarrow \theta_{x} \xrightarrow{d} \Omega_{x}^{\prime} \rightarrow 0
$$

If fullow tht me of on e....t s-1.

$$
\begin{aligned}
&0 \rightarrow \underbrace{H^{0}\left(x, C_{n}\right.}_{G})\sim \underbrace{H^{0}\left(x, \theta_{n}\right.}_{\sigma}) \\
& \Leftrightarrow H^{H^{0}\left(x, \Omega_{x}^{\prime}\right) \rightarrow H^{\prime}(x, G) \rightarrow H^{\prime}\left(x, \theta_{+}\right)} \\
& \rightarrow H^{\prime}\left(x, \Omega_{x}^{\prime}\right) \rightarrow \underbrace{H^{2}(x, a)}_{C_{C}^{\prime \prime} b_{y}}
\end{aligned}
$$

Since $H^{0}\left(x, O_{x}\right)=\mathbb{C}$, it follows that the fire map labelled x iss zero The second map labelled d is also zero by,
Tho $H^{\prime}\left(x, \Omega_{x}^{\prime}\right) \cong$ ©

It follows tat
Prop Theme is a short exact sos.

$$
\begin{aligned}
& 0 \rightarrow H^{0}\left(x, \Omega_{\infty}^{\prime}\right) \rightarrow H^{\prime}(x, 6) \rightarrow H^{\prime}\left(x, \theta_{\lambda}\right) \rightarrow 0 \\
& \text { Cor } \quad b_{1}(x)=\ln H^{0}\left(\Omega_{0}^{\prime}\right)+d H^{\prime}\left(\theta_{\infty}\right)
\end{aligned}
$$

$$
4 \text { Sere } d_{\text {uclity }}
$$

Thm (Sere dudity) Let x be a compoct Riemann surfoc, and L be a line buale o- L, cup produt gives a nondegeneat p airing

$$
H^{\prime}(x, L) \times H^{0}\left(x, \Omega_{x}^{\prime} \otimes L^{*}\right) \rightarrow H^{\prime}\left(x, \Omega_{x}^{\prime}\right) \cong \mathbb{C}
$$

Therefon, thene is a natural isomo'phism

$$
H^{\prime}(X, L) \cong H^{0}\left(X, \Omega_{*}^{\prime} \otimes L^{*}\right)^{*}
$$

Cor The geans

$$
g(x)=\operatorname{dn} H^{0}\left(x, \Omega_{x}^{\prime}\right)=\operatorname{dn} H^{\prime}\left(x, \theta_{x}\right)
$$

Pf Serre implion

$$
\ln H^{0}\left(x, \Omega^{\prime}\right)=l H^{\prime}\left(x, \theta_{n}\right)
$$

The reolt flltores from this plug. K previons cor:

$$
2 g=\operatorname{de} H^{\circ}\left(\Omega_{\lambda}^{\prime}\right)+\ln H^{\prime}\left(\theta_{,}\right)
$$

ζ Harmonic Forms
We will say a few word about proofs. First, wa real the holonorphore functions out harmonica functions ane claros related. This can be explained by notion the

$$
\begin{aligned}
& \partial \bar{\partial} f=\frac{1}{4}(\underbrace{\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) f d z \wedge d \bar{z}}_{\Delta} \\
& \bar{\partial} \partial f=-\partial \bar{\partial} f
\end{aligned}
$$

Therefore
f holomorphic $\Rightarrow f \& \bar{f}$ harmonic
$\Rightarrow R \in f$ harmonic
Converslay ti known that a rel valued harmonic function is the red port of a hulon...phie fain locally.
This suggest,

Def A 1 -furm α a R.S. is harmanis if its a linear conlination of holomorphic l-form and the corplax conjugat of a halomophic i- foum (= antitholomarph.e (-forn).

Rmk This isn'f He usal dof, bot.f: equivalenl

Iemra A harronic (-form is clused
r.e. it satisfor $d \alpha=0$.
$p f$ when a is holomoiphie

$$
d \alpha=\bar{\partial} \alpha=0
$$

likenisu for the ontrhulomurphe caso

Hodg."Thm $\left(W_{\text {ey }}, 1\right)$ when X is a compeof R.S. evory class in $I^{\prime}(x, \mathbb{C})$ has a unigu harmonic representition.

Historid Not Hodge prowel the analogous then in highos dims.

