
Chapter 1

Riemann surfaces

1.1 Hyperelliptic integrals and curves

As all of us learn in calculus, that integrals involving square roots of quadratic
polynomials can be evaluated by elementary methods. For higher degree poly-
nomials, this is no longer true, and this was a subject of intense study in the
18th and 19th centuries by Euler, Legendre, Abel,.... An integral of the form

∫
p(x)√
f(x)

dx (1.1)

is called elliptic if p(x) is polynomial and f(x) is a polynomial of degree 3 or 4,
and hyperelliptic if f has higher degree.

A big advance in the above study involved switching from real to complex
analysis. But the really big step was due to Riemann, who introduced the
geometric point of view in the mid 19th century. He suggested that we should
really be looking at the curve Xo defined by

y2 = f(x)

in C2. When f(x) =
∏
(x → ai) has distinct roots (which we assume from now

on), Xo is a nonsingular a!ne algebraic curve. A bit more precisely, let

F (x, y) = y2 → f(x)

Nonsingularity means that the gradient ↑f = (ωFωx ,
ωF
ωy ) does not vanish on the

zero set
Xo = V (F ) := {(x, y) | F (x, y) = 0}

Since we are working over C, we can also regard it as a Riemann surface. We
will give the precise definition shortly, but intuitively it is is something which
locally looks like C. To see that it is the case for Xo, we need to invoke the
implicit function theorem as explained later.
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It is convenient to add points at infinity to make it a compact Riemann
surface X called a (hyper)elliptic curve. To make this rigorous, we first take the
projective closure of Xo

X = {[x, y, z] ↓ P2
C | Fh(x, y, z) = 0}

where P2
C = (C3

→ {0})/C→ is the complex projective plane, and Fh is the
homogenization of F (the smallest degree homogeneous polynomial such that
Fh(x, y, 1) = F (x, y)). X is a projective algebraic curve. In general, X could be
singular, but let us ignore this for now, and suppose thatX = X is nonsingular.1

C3
→{0} will inherit a Hausdor” topology from C3. Taking the quotient topology

makes P2 into a compact Hausdor” space (which is very di”erent from the
Zariski topology). We give X the induced topology, then it is compact and
Hausdor”.

1.2 Riemann surfaces

It is time to give a rigorous definition.2 A Riemann surface or a one dimensional

complex manifold or a nonsingular complex curve (these terms are interchange-
able) consists of the following data:

1. A metrizable topological space X.

2. An open cover {Ui} of X.

3. A collection of homeomorphisms ωi : Ui ↔ # to a disk, such that ωi ↗ω
↑1
j

are holomorphic.

The sets Ui are called coordinate disks or charts, and the composition z ↗ωi

(which is usually just written as zi or just zi) is called a local coordinate. We call
xi = Re zi, yi = Imzi the real coordinates. We can define higher dimensional
complex manifolds and C↓ manifolds in the same way, with # replaced by a
ball in Rn or a product of disks in Cn. Condition 3 is that ωi ↗ω

↑1
j is either C↓

or holomorphic. A function of several variables is holomorphic if it is continuous
and holomorphic in each variable, when the other variables are fixed.

Let us consider some examples. Obviously:

Example 1.2.1. Any open subset of C gives a Riemann surface.

The first nontrivial example that we learn in basic complex analysis is

Example 1.2.2. The Riemann sphere S2
consists of the sphere with U0 =

S2
→ (south pole) and U↓ = S2

→ (north pole). The function ω0 is given by

stereographic projection. If z = z0 is the coordinate on U0, the coordinate z↓
on U↓ satisfies z↓ = z↑1

, when it make sense. Note that algebraic geometers

prefer to think of this as P1
C.

1
For people who know what this means, in general one can always blow up X obtain a

nonsingular curve X.
2
As far as I can tell, this goes back to Weyl. His 1913 book on Riemann surfaces gave the

first completely rigourous treatment of this topic.
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Lemma 1.2.3. A nonsingular a!ne algebraic curve has the structure of a Rie-

mann surface in a natural way.

Proof. Let f(x, y) be a polynomial such that ↑f does not vanish on X = V (f).
Let (xi, yi) ↓ X be a point such that ωf

ωx (xi, yi) ↘= 0 (resp. ωf
ωy (xi, yi) ↘= 0) , then

the holomorphic implicit function [Gri!ths-Harris, p 19] says that there exits
open sets Ui = {|x→ xi| < εi}, V = {|y → yi| < ϑi} and a holomorphic function
g : Ui ↔ Vi such that X ≃ Ui ⇐ Vi = {(x, y) | y = g(x)} (resp. with roles of x
and y reversed). Then the collection {X ≃Ui ⇐ Vi} gives an open cover with ωi

given by projection to Ui.

Lemma 1.2.4. A nonsingular algebraic curve in the projective plane has the

structure of a Riemann surface in a natural way.

Proof. Let X ⇒ P2 be a nonsingular curve. Let Ui = {[x0, x1, x2] | xi ↘=
0}, where xi are homogeneous coordinates. Then Ui

⇑= C2 where for example
when i = 0, the bijection is given by [x0, x1, x2] ⇓↔ (x1/x0, x2/x0). Under this
bijection, X maps to a nonsingular a!ne curve. We can now apply the previous
lemma.

Example 1.2.5. Let L ⇒ C be a lattice, which means L = Zϖ + Zϱ, where

ϖ and ϱ are R-linearly independent, e.g. ϖ = 1,ϱ = i. Consider X = C/L.
Topologically, this is a torus. Choose a disk # centered at 0 and contained in

the parallelogram with corners ±ϖ/2,±ϱ/2. For any p ↓ X, lift it to p̃ ↓ C,
and let U be the image of #+ p̃. This gives a coordinate disk,

We will see other examples that later. Given a Riemann surface X and
an open set U ⇔ X. A function f : U ↔ C,R is holomorphic (resp. C↓) if
its restriction to any coordinate disk is given by a holomorphic (resp. C↓ )
function of the local coordinate z (coordinates x, y).

Theorem 1.2.6. If X is a compact connected Riemann surface, then a holo-

morphic function on it is constant.

Proof. Let f : X ↔ C be holomorphic. Since X is compact, |f | must attain a
maximum somewhere, say p ↓ X. Let c = f(p) and Z = {q ↓ X | f(q) = c}.
Then Z is closed. Choose q ↓ Z, and choose a coordinate disk# ⇒ X containing
q. Since |f | has a maximal value at an interior point of #, the maximum
principle from complex analysis tells us that f |! must be constant. Therefore
Z ↖ #, which implies that it is open. Since Z is open and closed, and X is
connected, we must have Z = X.

A continuous map f : X ↔ Y between Riemann surfaces is called holo-

morphic if it can be expressed as a holomorphic function of local coordinates.
More precisely, for any p ↓ X, choose coordinates ωp : U

↔
→↔ V ⇒ C and

ςq : U ↗ ↔
→↔ V ↗

⇒ C at p and q = f(p), then ςq ↗ f ↗ ω↑1
p should be holomorphic.

A map f is an isomorphism if it is bijective and both f and f↑1 are holomor-
phic. Clearly f : X ↔ C is holomorphic in the current sense if it f ↓ O(X). A
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holomorphic function f : X ↔ P1 is called a meromorphic function on X. The
restriction of a meromorphic function to a coordinate disk is a meromorphic in
the usual sense.

Theorem 1.2.7. A nonconstant holomorphic between compact connected Rie-

mann surfaces is surjective.

Proof. Given f : X ↔ Y as above, f(X) is closed since X is compact. On the
other hand, f(X) is also open by basic complex analysis. So f(X) = Y .

1.3 A little sheaf theory

To completely check that something is a manifold or Riemann surface using the
previous standard definition can get a little tedious. This means that details
tend to get omitted in practice. We give an alternative definition based on
sheaf theory which is sometimes easier to use and pretty natural for an algebraic
geometer. But to avoid spending a lot of time on foundations, we will just talk
about sheaves of functions.3 Given a topological space X and a set S, a presheaf

of S-valued functions on X, is a collection F(U) of functions U ↔ S, for open
sets U , such that f |V ↓ F(V ) whenever f ↓ F(U) and V ⇒ U . We say that F
is a sheaf if f : U ↔ S lies in F(U) if f |Ui ↓ F(Ui) for any open cover of U . If S
has an abelian group or ring, we say that F is sheaf of abelian groups or rings
if F(U) is an abelian group or ring under pointwise operations. If F is a sheaf
on X, then for any open U ⇒ X, the restriction F|U (V ) = F(V ), for V ⇔ U ,
gives a sheaf on U .

The following examples are sheaves of rings of C-valued functions:

1. The collection of all continuous functions C(U) on a space X.

2. The collection of C↓ functions C↓(U) on a C↓ manifold X.

3. The collection of all holomorphic functions O(U) on a complex manifold
X.

The following is a presheaf but not a sheaf.

1. The collection of constant functions on C (or almost any space X).

Let k be a field. By a ringed space over k, we mean a pair (X,F) consisting
of a topological space X and a sheaf of algebras of k-valued functions on it.
A morphism f : (X,F) ↔ (Y,G) between k-ringed spaces is a continuous map
such that g ↓ G(U) implies that f→g := g ↗ f ↓ F(f↑1U). This is called an
isomorphism if f↑1 exists and is also a morphism.

We will be interested in the following examples:

3
In fact, this is not a real restriction, because any sheaf is isomorphic to a sheaf of functions

to an appropriate target.
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1. (X,C↓
X ) is an R-ringed space, where X is (real) C↓ manifold. A mor-

phism f : (X,C↓
X ) ↔ (Y,C↓

Y ) is the same thing as C↓ map of manifolds.
An isomorphism is the same thing as a di”eomorphism.

2. (X,OX) is a C-ringed space, where X is a complex manifold. A morphism
f : (X,OX) ↔ (Y,OY ) is the same thing as holomorphic map of manifolds
(and in particular Riemann surfaces). An isomorphism is the same thing
as biholomorphism (we will just use the word isomorphism).

Finally, we have the following alternative definition of Riemann surfaces etc.

Proposition 1.3.1. A Riemann surface is the same thing a ringed space (X,OX)
over C, such that X is metrizable and such that it is locally isomorphic to

(#,O!), where # ⇒ C is a the unit disk. More precisely, there exists an open

cover {Ui} such that (Ui,OX |Ui) ⇑= (#,O!). Similar statements hold for C↓

and complex manifolds.

Exercise 1.3.2. Let $ be a subgroup of the automorphism group of Riemann

surface X, and assume that the action is free and properly discontinuous (this

means every point p has a closed nbhd K such that φ(K) ≃K = ↙ for φ ↘= 1).
Let Y = X/$ with quotient topology, let ↼ : X ↔ Y denote the projection,and

let OY (U) = OX(↼↑1U)” the ring of invariant functions. With the help of the

last proposition, show that (Y,OY ) is a Riemann surface.

1.4 Topological invariants

If X is a Riemann surface, then the connected components are also Riemann
surfaces. So we may usually restrict our attention to the connected surfaces
(and this assumption is not always stated explicitly).

Theorem 1.4.1 (Topological classification). A compact connected Riemann

surface is homeomorphic to a sphere with g handles. The number g ↓ N is

called the genus.

For example,

a

b1

a21

b2

has genus 2. This is really a theorem topology about compact oriented 2-
manifolds. The proof can be found in several places, such as Seifert and Threll-
fal’s classic “Lectures in topology”, which originally written in the 1930’s.

Although the genus is the key topological invariant, it is not the only one.
The other invariant we want to discuss is the first Betti number. We first define
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from the de Rham point of view. In calculus, given C↓ functions f, g on an
open set U ⇒ R2, we define an expression

↽ = f(x, y)dx+ g(x, y)dy

to be a C↓ di”erential form of degree 1 or simply 1-form on U . Let E
1(U)

denote the vector space of 1-forms on U . A basic question is when can we find
a C↓ function h such that

↽ = dh :=
⇀h

⇀x
dx+

⇀h

⇀y
dy

A necessary condition is that the 2-form

d↽ :=

(
⇀g

⇀x
→

⇀f

⇀y

)
dx ∝ dy = 0

One says that ↽ is closed if the last condition holds, and exact if ↽ = df . A
closed form need not be exact as can be seen using U = R2

→ {0} and ↽ equals
“d⇁” (note that ⇁ is not a true function on U). We measure the failure by
introducing the first de Rham cohomology

H1
dR(U,R) =

{↽ ↓ E
1(U) | d↽ = 0}

{df | f ↓ C↓(U)}

The first Betti number b1(U) is

dimR H1
dR(U,R)

We extend these definitions to a Riemann surface X as follows: A C↓ 1-form
↽ on X is an assignment of a 1-form in the above sense ↽i = fidxi + gidyi,
for every system of real coordinates. These are required to be compatible with
coordinate changes in the sense that

↽j = fi

(
⇀xi

⇀xj
dxj +

⇀xi

⇀yj
dyj

)
+ gi

(
⇀yi
⇀xj

dxj +
⇀yi
⇀yj

dyj

)

(This is pretty much the classical approach. There are coordinate free ap-
proaches which, however, take more time to set up.) The other notions extend
in the same way, and we can define H1

dR(X,R) and the first Betti number as
above. Letting E

0(X) = C↓(X) and E
2(X) denote the space of 0-forms and

2-forms. We define the other de Rham cohomologies by

H0
dR(X,R) = {f ↓ E

0(X) | df = 0}

H2
dR(X,R) = {↽ ↓ E

0(X) | d↽ = 0}

It is easy to see that df = 0 implies that f is constant. Therefore

H0
dR(X,R) ⇑= R



1.4. TOPOLOGICAL INVARIANTS 11

It is also true that
H2

dR(X,R) ⇑= R
but this is harder to see. Thus the dimensions

b0(X) = b2(X) = 1

The Euler characteristic of any topological space (for which bi is defined and∑
bi < ′) is given by

e(T ) =
∑

(→1)ibi(T )

Therefore
e(X) = b0(X)→ b1(X) + b2(X) = 2→ b1(X)

One nice feature of the Euler characteristic is the following “inclusion-exclusion”
property

Theorem 1.4.2. If T = U ∞ V is a union of open sets,

e(T ) = e(U) + e(V )→ e(U ≃ V )

Proof. This follows from the Mayer-Vietoris sequence and the additivity of dim
for exact sequences.

Exercise 1.4.3. Use the above theorem to show that e(X) = 2→ 2g when X is

a genus g compact surface. Conclude that b1(X) = 2g.

There is a dual point of view, which is more geometric. Roughly speaking
the first homology H1(X,Z) has generators consisting of closed oriented C↓

paths, or loops, in X. Two loops φ1, φ2 define the same element of H1(X,Z) if
there exists subsurface S ⇒ X whose boundary is φ1 → φ2.

−

S

1
γ

2
γ

For a more complete treatment, see for example Hatcher’s Algebraic Topology.
Given a closed 1-form ↽, Stokes’ theorem shows that

φ ⇓↔

∫

ε
↽

gives a well defined element of

Hom(H1(X,Z),R)

Theorem 1.4.4 (de Rham). The above map gives an isomorphism

H1
dR(X,R) ⇑= Hom(H1(X,Z),R)

Therefore rankH1(X,Z) = 2g. In fact, it is known that H1(X,Z) is torsion
free, therefore it is isomorphic to Z2g. In the genus 2 example depicted above,
the loops a1, a2, b1, b2 denote the generators.



12 CHAPTER 1. RIEMANN SURFACES

1.5 Elliptic curves

Let L ⇒ C be a lattice, i.e. subgroup spanned by two R-linearly independent
numbers ↽i. The torus E = C/L is called an elliptic curve. We will see below
that such a curve can be realized as cubic curve in the plane. Since E ⇑= C/↽↑1

1 L,
there is no loss in assuming that ↽1 = 1, and that Im(↽2) > 0 (replace ↽2 by
→↽2 if necessary). A translate of a parellogram having corners 0, 1,↽2, 1 + ↽2

will be referred to as a fundamental parallelogram.
Now consider complex function theory on E. Any function on E can be

pulled back to a function f on C such that

f(z + λ) = f(z), λ ↓ L (1.2)

A meromorphic function satisfying this is called a doubly periodic function or
an elliptic function with respect to L.

Proposition 1.5.1. Any holomorphic elliptic function is constant.

First proof. An holomorphic elliptic function is a holomorphic function on E.
Earlier we proved that holomorphic functions on compact Riemann surfaces are
constant.

Second proof. A holomorphic elliptic function is a bounded entire function. This
is constant by Liouville’s theorem.

So to get interesting elliptic functions, we must have poles. For example:

Theorem 1.5.2. The Weirerstrass ℘-function

℘(z) =
1

z2
+

∑

ϑ↘L↑{0}

[
1

(z → λ)2
→

1

λ2

]

is an even elliptic function with double poles at points of L and no other singu-

larites.

First we need the following, which can be proved using elementary analysis.

Lemma 1.5.3. If k > 2, the series, called an Eisenstein series,

∑

ϑ↘L↑{0}

1

λk

converges absolutely.

Proof of theorem. Some elementary manipulations lead to an inequality
∣∣∣∣

1

(z → λ)2
→

1

λ2

∣∣∣∣ =
∣∣∣∣
2λz → z2

λ2(z → λ)2

∣∣∣∣ ∈
const

|λ|3

when z lies in a bounded subset of C → L. Therefore we see that the series for
℘(z) converges uniformly on compact sets away from L by the previous lemma.



1.5. ELLIPTIC CURVES 13

The series shows that ℘(→z) = ℘(z), so it is even. By uniform convergence, we
can di”erentiate term by term to get

℘↗(z) = →2
∑

ϑ↘L

1

(z → λ)3

This is clearly elliptic. Therefore

℘(z + λ) = ℘(z) + c(λ)

for some c(λ) which is independent of z. Choosing z = →λ/2, and using the
evenness of ℘(z) shows that c(λ) = 0. This implies that ℘(z) is elliptic. Clearly
it has a double pole at 0. and therefore at all points of L.

We will need the following below.

Lemma 1.5.4. Let f(z) be a nonzero elliptic function, and P a fundamental

parallelogram such that the poles of f(z) do not lie on the boundary of P . Then

the sum of orders of f within P equals the sum of the orders of the poles.

Proof. By complex analysis the di”erence between the above orders is

1

2↼i

∫

ωP

f ↗(z)

f(z)
dz

Double periodicity of f implies that the integral along opposite sides of P cancel.

Exercise 1.5.5. Use the fact that ℘↗(z) is an odd elliptic function to prove that

S = {
1
2 ,

ϖ2
2 , 1+ϖ2

2 } are zeros of this function. Choose a fundamental parallelo-

gram P ↗
with 3 corners given by the above points. Let P = P ↗ + ε(1 + ↽2) with

ε > 0 small, so that the points S lie in the interior of P . Use the lemma to

show that the zeros of ℘↗(z) in P are exactly the points in S.

The next step is to relate this to algebraic geometry by embedding E into
projective space. Denote the image of 0 in C by 0 as well.

Theorem 1.5.6.

(a) (℘↗)2 = 4℘3
→ g2℘→ g3 for the appropriate choice of constants gi.

(b) The a!ne and projective algebraic curves defined by

y2 = 4x3
→ g2x→ g3

and

zy2 = 4x3
→ g2xz

2
→ g3z

3

are nonsingular.
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(c) The map z ⇓↔ (℘(z),℘↗(z)) ↓ C2
, gives a well defined map of E minus

0 to C2
. This gives an isomorphism between E → {0} (resp. E) and the

a!ne (projective) cubic defined in (b).

Sketch. See [Silverman, Arithmetic of elliptic curves, chap VI] for complete
details. The idea for (a) is to choose the constants so that the di”erence (℘↗)2→
4℘3

→ g2℘ → g3 vanishes at 0. But then it is elliptic with no poles, so it is
constant. Therefore it vanishes everywhere.

Using the previous exercise and (a), we can see that 4x3
→ g2x → g3 has

3 distinct roots. It is easy to see using that the curves defined in (b) are
nonsingular.

Let ω(z) = (℘(z),℘↗(z)). Clearly this factors through % : E→ {0} ↔ C2 and
the image lies within the a!ne cubic given in (b). We will be content to prove
that % is injective. Suppose not. Then ω(z1) = ω(z2) for z1 → z2 /↓ L. Let P
be a fundamental parallelogram which is symmetric about 0. After translating
P slightly, we can assume without loss of generality that ±z1, z2 lie in the
interior of P . The function f(z) = ℘(z) → ℘(z1) is even, so it must vanish
at ±z1 and z2. Since f(z) has a double pole at 0 and not other poles in P ,
we can conclude by the previous lemma that f(z) can have at most 2 zeros.
This forces z2 = →z1. Since ℘↗(z) is an odd function, ℘↗(z2) = →℘↗(z1). If
℘↗(z1) ↘= 0, then ω(z1) ↘= ω(z2), which is a contradiction. Therefore ℘↗(z1) = 0,
which implies that z1 is a double zero of f . Therefore z2 = z1. In a nbhd of
0, ω(z) = [z3℘(z), z3℘↗(z), z3] ↓ P2. Since ℘↗(z) has a triple pole at 0, this
shows that we have a holomorphic extension with ω(0) = [0, 1, 0]. This gives an
injective holomorphic map % from E to the projective cubic in (b). Since % is
nonconstant, it also surjective. This almost proves that it is an isomorphism.
To make sure, we need to check that the derivative everywhere nonzero. See
Silverman for this.

In summary, an elliptic curve really is an algebraic curve, which can be
realized as a plane cubic. In the purely algebraic theory, which works over any
field, one starts with the latter.

1.6 Jacobi’s Theta function

The alternative approach to getting interesting holomorphic functions on a lat-
tice is to relax the periodicity (1.2). This leads to the theory of theta functions.
The higher dimensional analogue will play an important role later. Basically,
we want holomorphic functions that satisfy

f(z + λ) = (some factor)f(z)

which we refer to as quasi-periodicity with respect to L = Z+ Z▷ with ▷ = ↽2

in the upper half plane. Similar ideas are in the theory of automorphic forms.
We can obtain elliptic functions by taking ratios of two such functions with the
same factors. To make it more precise, we want

f(z + λ) = ωϑ(z)f(z) (1.3)
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where ωϑ(z) is a nowhere zero entire function. To guarantee nonzero solutions,
we require some compatibility conditions

f(z + (λ1 + λ2)) = ωϑ1+ϑ2(z)f(z)

f((z + λ1) + λ2) = ωϑ2(z + λ2)ωϑ1(z)f(z)

which suggests that we should impose

ωϑ1+ϑ2(z) = ωϑ2(z + λ1)ωϑ1(z)

This is called the 1-cocycle identity. As it turns out, there is a cheap way to get
solutions, choose a nowhere zero function g(z) and let ωϑ(z) = g(z + λ)/g(z)
such as cocycle is called a coboundary. From the point of view of constructing
interesting solutions of (1.3), it is not very good. Any solution would be a
constant multiple of g(z). Taking ratios of two of these functions would result
in a constant.

The problem of constructing cocycles which are not coboundaries can be
solved using the machinery of group cohomology. The set of cocycles modulo
coboundaries forms the cohomology group H1(L,O(C)→). There is a connecting
homomorphism4

c1 : H1(L,O(C)→) ↔ H2(L,Z) ⇑= ∝
2L→

to the space of alternating integer valued forms on L. Given a cocycle ωϑ,
to show that it is not a coboundary is enough to show that the image of c1 is
nonzero. Fortunately this can be done explicitly. Since ωϑ is entire and nowhere
0, we can take a global logarithm ςϑ(z) = log ωϑ(z). Then

F (λ1,λ2) =
1

2↼i
[ςϑ1+ϑ1(z)→ ςϑ2(z + λ2)→ ςϑ1(z)] ↓ Z

gives an integer valued function such that

c1(ω•)(λ1,λ2) = F (λ1,λ2)→ F (λ2,λ1)

One can check that the exponential of

ςnϱ+m(z) = →n2↼i▷ + 2↼inz

gives a cocycle whose image under c1 is nonzero. With this choice, we can find
an explicit solution to (1.3). The Jacobi ⇁-function is given by the Fourier series

⇁(z) =
∑

n↘Z
exp(↼in2▷ + 2↼inz) =

∑

n↘Z
exp(↼in2▷) exp(2↼inz)

4
As the notation suggests, it is a version of the first Chern class. People familiar with

group cohomology can verify the last isomorphism for H
2
(L,Z) using the Koszul resolution,

otherwise take it as a blackbox.
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Writing ▷ = x+ iy, with y > 0, shows that on a compact subset of the z-plane
the terms are bounded by O(e↑n2y). So uniform convergence on compact sets
is guaranteed. This is clearly periodic

⇁(z + 1) = ⇁(z)

In addition it satifies the function equation

⇁(z + ▷) =
∑

exp(↼in2▷ + 2↼in(z + ▷))

=
∑

exp(↼i(n+ 1)2▷ → ↼i▷ + 2↼inz)

= exp(→↼i▷ → 2↼iz)⇁(z)

and more generally

⇁(z + n▷ +m) = exp(ςnϱ+m(z))⇁(z)

We can get a larger supply of quasiperiodic functions by translating. Given
a rational number b, define

⇁0,b(z) = ⇁(z + b)

Then

⇁0,b(z + 1) = ⇁0,b(z), ⇁0,b(z + ▷) = exp(→↼i▷ → 2↼iz → 2↼ib)⇁(z)

We can construct elliptic functions by taking ratios: ⇁0,b(Nz)/⇁0,b→(Nz) is a
(generally nontrivial) elliptic function when b, b↗ ↓ 1

NZ. More generally given
rational numbers a, b ↓ 1

NZ, we can form the theta functions with characteristics

⇁a,b(z) = exp(↼ia2▷ + 2↼a(z + b))⇁(z + a▷ + b) (1.4)

Fix N ∋ 1, and let VN denote the set of linear combinations of these functions.

Lemma 1.6.1. Given nonzero f ↓ VN , it has exactly N2
zeros in the parallel-

ogram with vertices 0, N,N▷, N + ▷ .

Sketch. Complex analysis tells us that the number of zeros is given by the
integral

1

2↼i

∫

ε

f ↗(z)dz

f(z)

over the boundary of the parallelogram. This can be evaluated to N2 using the
identities f(z + N) = f(z), f(z + N▷) = Const. exp(→2↼iNz)f(z) following
from (1.4).

These can be used to construct a projective embedding di”erent from the
previous.
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Theorem 1.6.2. Choose an integer N > 1 and the collection of all ⇁ai,bi , as

(ai, bi) runs through representatives of
1
NZ/Z. The the map of C/L into PN2↑1

by z ⇓↔ [⇁ai,bi(z)] is an embedding.

Sketch. Suppose that this is not an embedding. Say that f(z1) = f(z↗1) for some
z1 ↘= z↗1 in C/L and all f ↓ VN . By translation by (a▷ + b)/N for a, b ↓

1
NZ,

we can find another such pair z2, z↗2 with this property. Since dimVN = N2, we
can find additional points z2, . . . zN2↑3, distinct in C/NL, so that

f(z1) = f(z2) = f(z3) = . . . f(zN2↑3) = 0

for some f ↓ VN →{0}. Notice that we are forced to also have f(z↗1) = f(z↗2) = 0
which means that f has at least N2 + 1 zeros which contradicts the lemma.

Further details can be found in [Mumford, Lectures on Theta I]

Note that the smallest such embedding lands in P3, so it is di”erent from
what we obtained before.


