
Chapter 2

Hodge theory

2.1 Cauchy-Riemann operator

Let U → C be an open set Let C→(U) (resp. C→
R (U) ) denote the space of

complex (resp. real) valued functions. Similarly, we work with complex valued
di!erential forms, where E

1(U) (resp. E
1
R(U)) denotes the space of complex

(resp. real) valued 1-forms. Note that E1(U) is a module over C→(U). If

z = x+ iy

as usual, and introduce complex valued di!erential forms

dz = dx+ idy, dz̄ = dx↑ idy

Therefore

dx =
1

2
(dz + dz̄)

dy =
1

2i
(dz ↑ dz̄)

Given a C→ function f : U ↓ C, the total di!erential

df = fxdx+ fydy =
1

2
(fx ↑ ify)dz +

1

2
(fx + ify)dz̄

This suggests that we should introduce the operators

ωf =
1

2
(fx ↑ ify)dz

ω̄f =
1

2
(fx + ify)dz̄

so that
d = ω + ω̄
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If we set u = Re f, v = Imf , then

ω̄f =
1

2
[(ux ↑ vy) + i(uy + vx)]dz̄

This makes it clear that the condition ω̄f = 0 is equivalent to the Cauchy-
Riemann equations. Therefore

Lemma 2.1.1. f ↔ C→(U) is holomorphic if and only if ω̄f = 0.

We let E10(U) → E
1(U) (resp. E

01(U) → E
1(U)) be the submodule spanned

by dz (resp. dz̄). We call these forms of type (1, 0) or (0, 1). We have

E
1(U) = E

10(U)↗ E
01(U)

and ω (resp. ω̄) is just d followed by projection to these submodules.
We now want to show that of this make sense on a Riemann surface X.

Given two overlapping coordinate disks U and V with local coordinates z and
ε, we see that ε is a holomorphic function of z and visa versa. Therefore

dε = ωε =
ωε

ωz
dz

dz = ωz =
ωz

ωε
dε

Therefore
E
10(U ↘ V ) = C→(U ↘ V )dz = C→(U ↘ V )dε

We can now define E10(X) → E
1(X) to be the space of 1-forms whose restriction

to any coordinate disk Ui lies E
10(Ui). The previous equality shows that this

is well defined. We define E
01(X) to be the space of complex conjugates of

(1, 0)-forms. We can see that any form in E
1(X) has a unique decomposition

into a sum of (1, 0)-form and (0, 1)-form. Therefore

E
1(X) = E

10(X)↗ E
01(X)

We define ωf (resp. ω̄f) to be the projection of df to the first (resp. second)
factor. A (1, 0)-form is called holomorphic if its restriction to any coordinate
disk with coordinate z is f(z)dz with f holomorphic. We let ”1(X) denote the
space of holomorphic 1-forms.

2.2 Harmonic forms

Fix a compact (connected) Riemann surface X. Let us suppose that the genus
is g. As before C→(X) and E

p(X) will now denote the spaces of complex valued
C→ functions and complex valued forms. We these conventions, we can define
complex valued de Rham cohomology as before

H1
dR(X,C) = {ϑ ↔ E

1(X) | dϑ = 0}

{df | f ↔ C→(X)}



2.2. HARMONIC FORMS 21

This is isomorphic to H1
dR(X,R)≃C = C2g. Note the formula and similar ones

appear more uniform, if we set

E
0
X = E

00
X = CX

We note that Riemann surfaces have a canonical orientation: if x, y are
real and imaginary parts of a complex coordinate z, then dx ⇐ dy is positively
oriented. The orientation allows us to integrate two forms on X. Given ϑ,ϖ ↔

E
1(X), define

(ϑ,ϖ) =

∫

X
ϑ ⇐ ϖ

Stokes’ theorem and properties of the wedge product shows that this gives a
well defined skew symmetric pairing

( , ) : H1
dR(X,C)⇒H1

dR(X,C) ↓ C

For people familiar with it, this is dual to the (complexified) intersection pairing
on H1(X,Z)

An element of de Rham cohomology is really an equivalence class. Does such

a class have a distinguished representative? The answer will turn out to be yes.
To describe it, let us introduce a C→(X)-linear operation called the Hodge star
given locally by ⇑dx = dy, ⇑dy = ↑dx. This is amounts to multiplication by i
in the cotangent planes, so it is globally well defined operation. We have the
following basic properties

Lemma 2.2.1. E
1(X) has an inner product given by

⇓ϑ,ϖ⇔ = (ϑ, ⇑ϖ̄) =

∫

X
ϑ ⇐ ⇑ϖ̄

Proof. One can see that

(fdx+ gdy) ⇐ ⇑(hdx+ kdy) = (fh̄+ gk̄)dx ⇐ dy

(fdx+ gdy) ⇐ ⇑(fdx+ gdy) = (|f |2 + |g|2)dx ⇐ dy

This implies the basic properties including positive definiteness.

Corollary 2.2.2 (Poincaré duality). The bilinear form ( , ) is nondegenerate.

Remark 2.2.3. The topological form of Poincaré duality gives the stronger

result that the intersection pairing on H1(X,Z) is unimodular. This means that

H1 has a basis, called a symplectic basis, such that the pairing is represented by

(
0 I
↑I 0

)

We will use this later on.
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Definition 2.2.4. We define a 1-form ϑ to be co-closed if d(⇑ϑ) = 0. It is

harmonic if it is both closed and co-closed, i.e. dϑ = d(⇑ϑ) = 0. A form is

called co-exact if it equals ⇑df .

The reason for the name will be explained later on. The basic properties are
given by:

Proposition 2.2.5.

(a) A harmonic 1-form is a sum of a (1, 0) harmonic form and (0, 1) harmonic

form.

(b) A (1, 0)-form is holomorphic if and only it is closed if and only if is har-

monic.

(c) A (0, 1)-form is harmonic if and only it is antiholomorphic i.e. its complex

conjugate is holomorphic.

(d) A 1-form is co-closed (resp. closed) forms if and only if it is orthogonal

the space of exact (resp. co-exact) forms. Therefore a 1-form is harmonic

if and only if it is orthogonal to the direct spaces of

Proof. If ϑ is a harmonic 1-form, then ϑ = ϑ↑ + ϑ↑↑, where ϑ↑ = 1
2 (ϑ+ i ⇑ ϑ) is

a harmonic (1, 0)-form and ϑ↑↑ = 1
2 (ϑ↑ i ⇑ ϑ) is a harmonic (0, 1)-form.

If ϑ is (1, 0), then dϑ = ω̄ϑ. This implies the first half (b). For the second
half, use the identity

⇑dz = ⇑(dx+ idy) = dy ↑ idx = ↑idz

Finally, note that the harmoncity condition is invariant under conjugation, so
the (c) follows from (b).

For (d), we first observe that integration by parts (essentially Stokes’ theo-
rem) implies

⇓df,ϑ⇔ =

∫

X
df ⇐ ⇑ϑ̄ =

∫
d(f ⇑ ϑ̄)↑

∫

X
fd ⇑ ϑ̄ = ↑

∫

X
fd ⇑ ϑ̄

If ϑ is co-closed, then it follows that ⇓df,ϑ⇔ = 0. Conversely, suppose that
⇓df,ϑ⇔ = 0 for all f ↔ C→(X). Let d ⇑ ϑ = g(x, y)dx ⇐ dy in a coordinate disk
D. If g(p) ↖= 0, we can choose f with support in D such that f(x, y)g(x, y) ↙ 0
everywhere and strictly positive at p. Therefore

∫
X fd ⇑ ϑ > 0, so we can

conclude that d ⇑ ϑ = 0. A similar argument using

⇓ϑ, ⇑df⇔ =

∫

X
ϑ ⇐ ⇑ ⇑ df̄ = ↑

∫

X
d(f̄ϑ) +

∫

X
f̄dϑ =

∫

X
f̄dϑ (2.1)

shows that dϑ = 0 if and only if ϑ is orthogonal to co-closed forms.

Here is the key fact. We will say more about this in later on.
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Theorem 2.2.6 (Hodge theorem ). Every de Rham cohomology class has a

unique harmonic representative.

Remark 2.2.7. This statement is actually due Weyl, which Hodge generalized

to higher dimensions.

Corollary 2.2.8 (Hodge decomposition). We have

H1
dR(X,C) ∝= ”1(X)↗ ”1(X)

Therefore dim”1(X) = g.

Proof. By proposition 2.2.5, a harmonic 1 can be uniquely decomposed as a sum
of holomorphic 1-form and the complex conjugate of a holomorphic 1-form.

For reasons that will be explained later, one normally denotes ”1(X) by
H0(X,”1

X) and this notation will be used below.

2.3 Proof of the Hodge theorem

First we explain the connection between harmonic forms and harmonic func-
tions. Recall that C→ function f on an open subset of R2 is harmonic if it
satisfies the Laplace equation

#f :=

(
ω2

ωx2
+

ω2

ωy2

)
f = 0

Lemma 2.3.1. A 1-form on a disk is harmonic if and only if it is given by df ,
where f is a harmonic function.

Proof. Since a disk D is contractible, a 1-form on D is closed if and only if
equals df for some f . The form is also co-closed when

d⇑df = #fdx ⇐ dy = 0

Recall that Green’s identity from calculus implies that if f and ϱ are both
C→ and ϱ vanishes near the boundary ωD, then

∫

D
f#ϱ dxdy =

∫

D
(#f)ϱ dxdy

Therefore if f is harmonic, then the first integral vanishes. Weyl’s lemma is a
converse statement.

Theorem 2.3.2 (“Weyl’s lemma”). Let D → C be an open disk. Let f ↔ L2(D)
be such that ∫

D
f#ϱ dxdy = 0

for every compactly supported C→
function ϱ, then f is a C→

harmonic func-

tion.
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Proof. The proof is not di$cult but it takes a few pages, so we refer to [Farkas-
Kra, Riemann surfaces].

The proof of the Hodge theorem we give uses the method of orthogonal
projection. The idea is to use a generalization of a fact from basic linear algebra
that if S → V is a subspace of a finite dimensional inner product space, then

V = S ↗ S↓

When V is infinite dimensional, this is no longer true unless V is a Hilbert space
and S is closed. Thus we first need to complete everything to a Hilbert space
in order to apply this. Let us denote by L2

E
1(X) the Hilbert space completion

with of this space. Let E
1
ex(X), Ecl(X), E1

co(X) → E
1(X) denote the space of

exact, closed and co-exact 1-forms i.e. the forms ⇑df . Since these spaces are
orthogonal, we get that the closure

E1
ex(X) + E1

co(X) = E1
ex(X)↗ E1

co(X)

in L2
E
1(X). Let H denote the orthogonal complement of the above space. Then

we have an orthogonal decomposition

L2
E
1(X) = H ↗ E1

ex(X)↗ E1
co(X) (2.2)

Lemma 2.3.3. H consists of the space of harmonic C→ 1-forms.

Proof. Given a C→ form ϑ the orthogonality conditions defining H imply that
H is harmonic. Given an element of ϑ ↔ H, its restriction to a coordinate disk
D can be viewed as a di!erential form ϑ|D = pdx+qdy with L2 coe$cients. Let
ϱ be a C→ function with compact support on D. The orthogonality conditions
imply that

⇓pdx+ qdy, dϱx ↑ ⇑dϱy⇔ = 0

Expanding the left side yields

∫

D
p#ϱ dxdy = 0

This implies that p is harmonic by Weyl’s lemma. Similarly q is harmonic.
Therefore ϑ is C→, and consequently harmonic.

Lemma 2.3.4. E
1
cl(X) ↘ E1

ex(X) = E
1
ex(X)

Proof. If ϑ ↔ E
1
ex(X), and ϖ ↔ E

1
cl(X), then Stokes’ theorem implies that

(ϑ,ϖ) = ⇓ϑ, ⇑ϖ̄⇔ = 0. By continuity, this continues to hold for ϑ ↔ E1
ex(X).

Now suppose that ϑ ↔ E
1
cl(X) ↘ E1

ex(X). We just showed that the cohomol-
ogy class of ϑ satisfies (ϑ,ϖ) = 0 for any class ϖ ↔ H1

dR(X,C). Therefore by
Poincaré duality [ϑ] = 0. This implies that ϑ is exact.
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Proof of the Hodge theorem. Let ϑ ↔ E
1
cl(X). Then using (2.2), we may decom-

pose ϑ = ϖ + ς + φ, with ϑ ↔ H etc. We claim that ′φ′2 = 0. By continuity,
it is enough to assume that φ = ⇑df . Then the orthogonality conditions plus
(essentially) (2.1) shows that

′φ′2 = ⇓ϑ, ⇑df⇔ = ±

∫

X
d(fϑ) = 0

Therefore ϑ = ϖ+ ς. By lemma 2.3.3, ϖ is harmonic. Therefore ς = ϑ↑ ϖ is in
E
1
cl(X). By lemma 2.3.4, ς is exact.

We won’t give a proof, but it is possible to get a stronger result that the
space of 1-forms decomposes as below.

Theorem 2.3.5 (Hodge theorem II). We have a decomposition

E
1(X) = H ↗ E

1
ex(X)↗ E

1
co(X)

where H, E
1
ex(X) and E

1
co(X) is the space of harmonic, exact and co-exact 1-

forms respectively.

2.4 Background on sheaf cohomology

We want to give a somewhat di!erent interpretation of the Hodge decompo-
sition, which will rely on the machinery of sheaf cohomology. We will mostly
treat this machinery as a black box, or perhaps a dark grey box. More thorough
treatments can be found in the books on algebraic geometry by Gri$ths-Harris,
Hartshorne, Voisin, and myself. Let us start with some definitions. Given a
topological space X, a presheaf of abelian groups is a contravariant functor
from the category Open(X) of open sets of X, where morphisms are inclusions,
to the categorry of abelian groups Ab. More concretely a presheaf is a collection
of abelian groups F(U), U ↔ Open(X), with restrictions ↼UV : F(U) ↓ F(V ),
when V ∞ U , subject to appropriate compatibility conditions. Such a presheaf
F is called a sheaf of abelian groups (henceforth just a sheaf) if for any open U
with open cover {Ui}, any collection fi ↔ F(Ui) such that fi|Ui↔Uj = fj |Ui↔Uj

is the restriction of a unique section f ↔ F(U). Let Ab(X) denote the category
of sheaves on X where a morphism is an additive natural transformation. This
is an abelian category, so it comes with a natural notion of exact sequence. To
spell it out, a sequence of sheaves

0 ↓ A ↓ B ↓ C ↓ 0

is exact if for any x ↔ X, we can find an open nbhd U such that

0 ↓ A(U) ↓ B(U) ↓ C(U)

is exact in Ab, and for every ς ↔ C(U), after shrinking U , ς lies in the image
of B(U). For the last part, it would su$ce to assume that B(U) ↓ C(U) is
surjective, although the condition is a bit weaker.
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Example 2.4.1. Let X be a Riemann surface. Let ZX denote the sheaf of

locally constant Z functions on X, OX the sheaf of holomorphic functions, and

O
↗
X the sheaf of nowhere zero holomorphic functions viewed as a multiplicative

group. We have an sequence

0 ↓ ZX ↓ OX
e
↑↓ O

↗
X ↓ 1

where the first map is the obvious one, and second sends f ↓ exp(2↽if). If U
is a coordinate disk, then

0 ↓ Z(U) ↓ OX(U)
e
↑↓ O

↗
X(U) ↓ 1

is exact. Therefore the above sequence of sheaves is exact. This called the

exponential sequence.

Example 2.4.2. Let X be a Riemann surface once again. Let ZX denote the

sheaf of locally constant Z functions on X,. Then the sequence

0 ↓ CX ↓ OX
d
↑↓ ”1

X ↓ 0

is exact. This follows from the exactness of

0 ↓ CX(U) ↓ OX(U)
d
↑↓ ”1

X(U) ↓ 0

for a coordinate disk U .

Example 2.4.3. Again let X be a Riemann surface. Then we have a sequence

0 ↓ OX ↓ C→
X

ω̄
↑↓ E

01
X ↓ 0

which we claim is exact. It su!ces to check the exactness of

0 ↓ OX(U) ↓ C→
X (U)

ω̄
↑↓ E

01
X (U) ↓ 0

when U is a coordinate disk. The surjectivity of the last map follows from the

ω̄-Poincaré lemma [Gri!ths-Harris, p 5]. The injectivity of the first map is

clear, and the exactness in the middle from the Cauchy-Riemann equations.

There is an obvious extension of exactness for a sequence of more than 3
sheaves.

Example 2.4.4. Again X is a Riemann surface. Then

0 ↓ CX ↓ E
0
X

d
↑↓ E

1
X

d
↑↓ E

2
X ↓ 0

is exact. This can be checked on the disk, where it follows from the usual

Poincaré lemma [e.g. Spivak, Calculus on manifolds]. There are couple of

variants worth mentioning. We can use real valued functions and forms and

everything still works. X can be replace by an n-dimensional C→
-manifold. We

still get an exact sequence as above, except that it has length n.
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Let us define a functor % : Ab(X) ↓ Ab by %(F) = F(X).

Lemma 2.4.5. The functor % is left exact, i.e. given an exact sequence

0 ↓ A ↓ B ↓ C ↓ 0

we have an exact sequence

0 ↓ %(A) ↓ %(B) ↓ %(C)

It is generally not true that the last map above is surjective, and this not
just a mere technicality:

Example 2.4.6. Let X = C↗
, then the map

e : %(OX) ↓ %(O↗
X)

is not surjective because as is well known there is no way to define a holomorphic

logarithm on C↗

Following the usual pattern in homological algebra, we have

Theorem 2.4.7. There exists a sequence of functors Hi(X,↑) : Ab(X) ↓ Ab
such that

H0(X,F) ∝= %(F)

An exact sequence of sheaves

0 ↓ A ↓ B ↓ C ↓ 0

gives rise to a long exact sequence

0 ↓ H0(X,A) ↓ H0(X,B) ↓ H0(X, C) ↓ H1(X,A) ↓ . . .

We need one more fact to make this useful. The following is special case
of vanishing theorem for fine sheaves. We refer to the previous references for
further information.

Theorem 2.4.8. Let X be a C→
-manifold, and let F be a sheaf of C→

X -modules

(which means that each F(U) is a C→(U)-module, restrictions respect the mod-

ule structure), then Hi(X,F) = 0 for i > 0.

2.5 Hodge theorem in terms of sheaf cohomol-

ogy

With the previous results in hand, we can do some calculations.

Proposition 2.5.1 (Dolbeault). If X is a Riemann surface, then

H1(X,OX) ∝=
E
01(X)

ω̄C→(X)

Hi(X,OX) = 0, if i ↙ 2
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Proof. This follows the exact sequence

0 ↓ OX ↓ C→
X

ω̄
↑↓ E

01
X ↓ 0

and theorems 2.4.7 and 2.4.8.

Proposition 2.5.2 (de Rham). If X is a C→
-manifold

Hi(X,CX) ∝= Hi
dR(X,C)

Proof. We just give the proof for i = 1 when X is a Riemann surface. The same
method works in general. Break

0 ↓ CX ↓ E
0
X

d
↑↓ E

1
X

d
↑↓ E

2
X ↓ 0

into exact sequences
0 ↓ CX ↓ E

0
X ↓ E

1
X,cl ↓ 0

0 ↓ E
1
X,cl ↓ E

1
X

d
↑↓ E

2
X ↓ 0

Then by the above theorems

H1(X,CX) = coker[H0(X, E0
X) ↓ H0(X, E1

X,cl)]

=
kerH0(X, E1

X)
d
↑↓ H0(X, E1

X)]

dH0(X, E0
X)

= H1
dR(X,C)

Theorem 2.5.3 (Hodge theorem for ω̄). If X is compact of genus g, then every

element of

E
01(X)

ω̄C→(X)

has a unique harmonic representative. Therefore

dimH1(X,OX) ∝= H0(X,”1
X)

Proof. Observe that ω̄ is the (0, 1) part of d as well as ↑i⇑d because

↑i⇑df = ↑i(⇑ωf + ⇑ω̄f) = ↑ωf + ω̄f

Theorem 2.3.5 shows that

E
1(X) = H ↗ dC→(X)↗ ⇑dC→(X)

where H is the space of harmonic 1-forms. Therefore the (0, 1)-part of this
decomposition yields

E
01(X) = H01

↗ ω̄C→(X)

where H01 is the space of harmonic (0, 1)-forms. This implies the theorem.
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Corollary 2.5.4. In the long exact sequence associated to

0 ↓ CX ↓ OX ↓ ”1
X ↓ 0

we get an exact sequence

0 ↓ H0(X,”1
X) ↓ H1(X,CX) ↓ H1(X,OX) ↓ 0

Proof. Since dimH0(X,”1
X) = dimH1(X,OX) = g and dimH1(X,CX) = 2g,

the map ⇀ below is injective, and p is surjective

H0(X,”1
X)

ε
↑↓ H1(X,CX)

p
↑↓ H1(X,OX)

Remark 2.5.5. The isomorphism

dimH1(X,OX) ∝= H0(X,”1
X)

gives a natural splitting to above projection

H1(X,CX) ↓ H1(X,OX)

Corollary 2.5.6 (Serre duality). The pairing

(ϑ,ϖ) =

∫

X
ϑ ⇐ ϖ

on H1(X,C) induces an isomorphism

H0(X,”1
X)↗ ∝= H1(X,OX)

Furthermore,

H1(X,”1
X) ∝= C

Proof. We showed earlier that that ( , ) is nondegenerate. This means that given
a nonzero ϑ ↔ H1(X,C), we can find ϖ ↔ H1(X,C) such (ϑ,ϖ) ↖= 0. Suppose
that ϑ ↔ H0(X,”1

X), then (ϑ,ϖ) = 0 because ϑ ⇐ ϖ = 0. Therefore we must
be able to choose ϖ ↔ H1(X,OX) (under the decomposition explained above).
Therefore the pairing induces an injection

H0(X,”1
X)↗ ⇁↓ H1(X,OX)

This must be an isomorphism, because the spaces have the same dimension.
By the previous corollary and proposition 2.5.1, the long exact sequence

associated to
0 ↓ CX ↓ OX ↓ ”1

X ↓ 0

gives an isomorphism

H1(X,”1
X) ∝= H2(X,C) ∝= C
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2.6 Riemann’s inequality

Let X be a compact Riemann surface of genus g. A function on X ↑ S, where
S → X is a finite set, is called meromorphic if it holomorphic and if the Laurent
expansion with respect to any coordinate has a finite number of negative terms
(i.e. it has no essential singularities). Let C(X) denote the field of meromorphic
functions on X. A basic fact, that we prove in this section, X always caries a
nonconstant meromorphic function.

Given a finite set of distinct points S = {p1, . . . , pn}, set D =
∑

pi to the
formal sum, and degD = n. If S = ∈, D = 0. We define a sheaf ”1

X(logD)
whose sections over U consist of holomorphic 1-forms on U with at worst simple
poles at points of U ↘ S.

Theorem 2.6.1 (Riemann’s inequality).

dimH0(X,”1
X(logD)) ↙ degD + g ↑ 1

Proof. We define the skyscraper sheaf Cpi to consist of

Cpi =

{
C if pi ↔ U

0 otherwise

Then we have an exact sequence

0 ↓ ”1
X ↓ ”1

X(logD)
res
↑↑↓

⊕

pi↘S

Cpi ↓ 0

where the first map is the obvious inclusion, and the second sends to form ω to
the sum of its residues (defined in the usual way) at points of S. This gives rise
to an exact sequenec

0 ↓ H0(X,”1
X) ↓ H0(X,”1

X(logD)) ↓ CdegD
↓ H1(X,”1

X)

Since we proved that the last space is one dimensional, the theorem follows
immediately.

Corollary 2.6.2. X has a nontrivial meromorphic function.

Proof. By the theorem we can find 2 elements ωi ↔ H0(X,”1
X(logD)) as soon

as degD + g ↑ 1 ↙ 2. Locally ω=fi(z)dz, and the ratio ω1/ω2 = f1/f2 can be
seen to a globally well defined meromorphic function.

Note that Riemann’s inequality can be improved to a much sharper state-
ment called the Riemann-Roch theorem. We will not give it, since we plan to
go in a di!erent direction.


