Chapter 13

The 3 dimensional rotation group

A rotation in space is a transformation $R: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ determined by a unit vector $r \in \mathbb{R}^{3}$ and an angle $\theta \in R$ as indicated in the picture below.

A bit more precisely, the transformation $R=R(\theta, r)$ has the line through r as the axis, and the plane perpendicular to the line is rotated by the angle θ in the direction given by the right hand rule (the direction that the fingers of right hand point if the thumb points in the direction of r). R is a linear transformation, so it is represented by a matrix that we denote by the same symbol. It is invertible with inverse $R(-\theta, r)$. Therefore the set of rotations is a subset of $G L_{3}(\mathbb{R})$. We will show that it is a subgroup, and in particular that the product of two rotations is again a rotation. This is fairly obvious if the rotations share the same axis, but far from obvious in general. The trick is characterize the matrices that arise from rotations. Recall that a 3×3 matrix A is orthogonal if its columns are orthonormal, i.e. they unit vectors such that the dot product of any two is zero. This is equivalent to $A^{T} A=I$.
Lemma 13.1. If A is orthogonal, $\operatorname{det} A= \pm 1$.

Proof. From $A^{T} A=I$ we obtain $\operatorname{det}(A)^{2}=\operatorname{det}\left(A^{T}\right) \operatorname{det}(A)=1$.
We already saw in the exercises to chapter 3 that the set of orthogonal matrices $O(3)$ forms a subgroup of $G L_{3}(\mathbb{R})$. Let $S O(3)=\{A \in O(3) \mid \operatorname{det} A=$ $1\}$.

Lemma 13.2. $S O(3)$ is a subgroup of $O(3)$.
Proof. If $A, B \in S O(3)$, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=1$ and $\operatorname{det}\left(A^{-1}\right)=$ $1^{-1}=1$. Also $\operatorname{det}(I)=1$.

Proposition 13.3. Every rotation matrix lies in $S O(3)$.
Proof. Given a unit vector $v_{3}=r$ as above, fix $R=R(\theta, r)$. By Gram-Schmid we can find two more vectors, so v_{1}, v_{2}, v_{3} is orthonormal. Therefore $A=$ [$v_{1} v_{2} v_{3}$] is an orthogonal matrix. After possibly switching v_{1}, v_{2}, we can assume that v_{1}, v_{2}, v_{3} is right handed or equivalently that $\operatorname{det} A=1$. Then

$$
\begin{aligned}
& R\left(v_{1}\right)=\cos \theta v_{1}+\sin \theta v_{2} \\
& R\left(v_{2}\right)=-\sin \theta v_{1}+\cos \theta v_{2} \\
& R\left(v_{3}\right)=v_{3}
\end{aligned}
$$

and therefore

$$
R A=A M
$$

where

$$
M=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Since $M, A \in S O(3)$, it follows that $R=A M A^{-1} \in S O(3)$.
In principle, the method of proof can be used to calculate $R\left(\theta,[a, b, c]^{T}\right)$ explicitly. In fact, I did find an expression with the help of a computer algebra package:

$$
\left[\begin{array}{ccc}
a^{2}+\cos (\theta)-a^{2} \cos (\theta) & -c \sin (\theta)+a b-a b \cos (\theta) & a c-a c \cos (\theta)+b \sin (\theta) \\
a b-a b \cos (\theta)+c \sin (\theta) & b^{2}+\cos (\theta)-b^{2} \cos (\theta) & -a \sin (\theta)+b c-b c \cos (\theta) \\
-b \sin (\theta)+a c-a c \cos (\theta) & b c-b c \cos (\theta)+a \sin (\theta) & -b^{2}+b^{2} \cos (\theta)-a^{2}+a^{2} \cos (\theta)+1
\end{array}\right]
$$

However, the formula is pretty horrendous and essentially useless. We will see a better way to do calculations shortly (which is in fact what I used to calculate the previous matrix).

We want to prove that every matrix in $S O(3)$ is a rotation. We start by studying their eigenvalues. In general, a real matrix need not have any real eigenvalues. However, this will not be a problem in our case.

Lemma 13.4. A 3×3 real matrix has a real eigenvalue.

Proof. The characteristic polynomial $p(\lambda)=\lambda^{3}+a_{2} \lambda^{2}+\ldots$ has real coefficients. Since λ^{3} grows faster than the other terms, $p(\lambda)>0$ when $\lambda \gg 0$, and $p(\lambda)<0$ when $\lambda \ll 0$. Therefore the graph of $y=p(x)$ must cross the x-axis somewhere, and this would give a real root of p. (This intuitive argument is justified by the intermediate value theorem from analysis.)

Lemma 13.5. If $A \in O(3), 1$ or -1 is an eigenvalue.
Proof. By the previous lemma, there exists a nonzero vector $v=[x, y, z]^{T} \in \mathbb{R}^{3}$ and real number λ such that $A v=\lambda v$. Since a multiple of v will satisfy the same conditions, we can assume that the square of the length $v^{T} v=x^{2}+y^{2}+z^{2}=1$. It follows that

$$
\lambda^{2}=(\lambda v)^{T}(\lambda v)=(A v)^{T}(A v)=v^{T} A^{T} A v=v^{T} v=1
$$

Theorem 13.6. A matrix in $S O(3)$ is a rotation.
Proof. Let $R \in S O(3)$. By the previous lemma, ± 1 is an eigenvalue.
We divide the proof into two cases. First suppose that 1 is eigenvalue. Let v_{3} be an eigenvector with eigenvalue 1 . We can assume that v_{3} is a unit vector. We can complete this to an orthonormal set v_{1}, v_{2}, v_{3}. The vectors v_{1} and v_{2} form a basis for the plane v_{3}^{\perp} perpendicular to v_{3}. The matrix $A=\left[v_{1}, v_{2}, v_{3}\right]$ is orthogonal, and we can assume that it is in $S O(3)$ by switching v_{1} and v_{2} if necessary. It follows that

$$
R A=\left[R v_{1}, R v_{2}, R v_{3}\right]=\left[R v_{1}, R v_{2}, v_{3}\right]
$$

remains orthogonal. Therefore $R v_{1}, R v_{2}$ lie in v_{3}^{\perp}. Thus we can write

$$
\begin{aligned}
& R\left(v_{1}\right)=a v_{1}+b v_{2} \\
& R\left(v_{2}\right)=c v_{1}+d v_{2} \\
& R\left(v_{3}\right)=v_{3}
\end{aligned}
$$

The matrix

$$
A^{-1} R A=\left[\begin{array}{lll}
a & b & 0 \\
c & d & 0 \\
0 & 0 & 1
\end{array}\right]
$$

lies in $S O(3)$. It follows that the block $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ lies in $S O(2)$, which means that it is a plane rotation matrix $R(\theta)$. It follows that $R=R\left(\theta, v_{3}\right)$.

Now suppose that -1 is an eigenvalue and let v_{3} be an eigenvector. Defining A as above, we can see that

$$
A^{-1} R A=\left[\begin{array}{ccc}
a & b & 0 \\
c & d & 0 \\
0 & 0 & -1
\end{array}\right]
$$

This time the upper 2×2 is block lies $O(2)$ with determinant -1 . This implies that it is a reflection. This means that there is a nonzero vector v in the plane v_{3}^{\perp} such $R v=v$. Therefore R also +1 as an eigenvalue, and we have already shown that R is a rotation.

From the proof, we extract the following useful fact.
Corollary 13.7. Every matrix in $S O(3)$ has +1 as an eigenvalue. If the matrix is not the identity then the corresponding eigenvector is the axis of rotation.

We excluded the identity above, because everything would be an axis of rotation for it. Let us summarize everything we've proved in one statement.
Theorem 13.8. The set of rotations in \mathbb{R}^{3} can be identified with $S O(3)$, and this forms a group.

13.9 Exercises

1. Check that unlike $S O(2), S O(3)$ is not abelian. (This could get messy, so choose the matrices with care.)
2. Given two rotations $R_{i}=R\left(\theta_{i}, v_{i}\right)$, show that the axis of $R_{2} R_{1} R_{2}^{-1}$ is $R_{2} v_{1}$. Conclude that a normal subgroup of $S O(3)$, different from $\{I\}$, is infinite.
3. Check that

$$
\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

has $1, e^{ \pm i \theta}$ as complex eigenvalues. With the help of the previous exercise show that this holds for any rotation $R(\theta, v)$.
4. Show the map $f: O(2) \rightarrow S O(3)$ defined by

$$
f(A)=\left[\begin{array}{cc}
A & 0 \\
0 & \operatorname{det}(A)
\end{array}\right]
$$

is a one to one homomorphism. Therefore we can view $O(2)$ as a subgroup of $S O(3)$. Show that this subgroup is the subgroup $\{g \in S O(3) \mid g r=$ $\pm r\}$, where $r=[0,0,1]^{T}$.
5. Two subgroups $H_{i} \subseteq G$ of a group are conjugate if for some $g \in G$, $H_{2}=g H_{1} g^{-1}:=\left\{g h g^{-1} \mid h \in H_{1}\right\}$. Prove that $H_{1} \cong H_{2}$ if they are conjugate. Is the converse true?
6. Prove that for any nonzero vector $v \in \mathbb{R}^{3}$, the subgroup $\{g \in S O(3) \mid$ $g v= \pm v\}$ (respectively $\{g \in S O(3) \mid g v=v\}$) is conjugate, and therefore isomorphic, to $O(2)$ (respectively $S O(2)$). (Hint: use the previous exercises.)

