
Chapter 13

The 3 dimensional rotation

group

A rotation in space is a transformation R : R3 ! R3 determined by a unit
vector r 2 R3 and an angle ✓ 2 R as indicated in the picture below.

r

θ

A bit more precisely, the transformation R = R(✓, r) has the line through r
as the axis, and the plane perpendicular to the line is rotated by the angle
✓ in the direction given by the right hand rule (the direction that the fingers
of right hand point if the thumb points in the direction of r). R is a linear
transformation, so it is represented by a matrix that we denote by the same
symbol. It is invertible with inverse R(�✓, r). Therefore the set of rotations
is a subset of GL3(R). We will show that it is a subgroup, and in particular
that the product of two rotations is again a rotation. This is fairly obvious if
the rotations share the same axis, but far from obvious in general. The trick is
characterize the matrices that arise from rotations. Recall that a 3 ⇥ 3 matrix
A is orthogonal if its columns are orthonormal, i.e. they unit vectors such that
the dot product of any two is zero. This is equivalent to ATA = I.

Lemma 13.1. If A is orthogonal, detA = ±1.
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Proof. From ATA = I we obtain det(A)2 = det(AT ) det(A) = 1.

We already saw in the exercises to chapter 3 that the set of orthogonal
matrices O(3) forms a subgroup of GL3(R). Let SO(3) = {A 2 O(3) | detA =
1}.

Lemma 13.2. SO(3) is a subgroup of O(3).

Proof. If A,B 2 SO(3), then det(AB) = det(A) det(B) = 1 and det(A�1) =
1�1 = 1. Also det(I) = 1.

Proposition 13.3. Every rotation matrix lies in SO(3).

Proof. Given a unit vector v3 = r as above, fix R = R(✓, r). By Gram-Schmid
we can find two more vectors, so v1, v2, v3 is orthonormal. Therefore A =
[v1v2v3] is an orthogonal matrix. After possibly switching v1, v2, we can assume
that v1, v2, v3 is right handed or equivalently that detA = 1. Then

R(v1) = cos ✓v1 + sin ✓v2

R(v2) = � sin ✓v1 + cos ✓v2

R(v3) = v3

and therefore
RA = AM

where

M =

2

4
cos ✓ � sin ✓ 0
sin ✓ cos ✓ 0
0 0 1

3

5

Since M,A 2 SO(3), it follows that R = AMA�1 2 SO(3).

In principle, the method of proof can be used to calculate R(✓, [a, b, c]T )
explicitly. In fact, I did find an expression with the help of a computer algebra
package:

2

4
a2 + cos(✓)� a2 cos(✓) �c sin(✓) + ab� ab cos(✓) ac� ac cos(✓) + b sin(✓)
ab� ab cos(✓) + c sin(✓) b2 + cos(✓)� b2 cos(✓) �a sin(✓) + bc� bc cos(✓)
�b sin(✓) + ac� ac cos(✓) bc� bc cos(✓) + a sin(✓) �b2 + b2 cos(✓)� a2 + a2 cos(✓) + 1

3

5

However, the formula is pretty horrendous and essentially useless. We will see a
better way to do calculations shortly (which is in fact what I used to calculate
the previous matrix).

We want to prove that every matrix in SO(3) is a rotation. We start by
studying their eigenvalues. In general, a real matrix need not have any real
eigenvalues. However, this will not be a problem in our case.

Lemma 13.4. A 3⇥ 3 real matrix has a real eigenvalue.
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Proof. The characteristic polynomial p(�) = �3+a2�2+ . . . has real coe�cients.
Since �3 grows faster than the other terms, p(�) > 0 when � � 0, and p(�) < 0
when � ⌧ 0. Therefore the graph of y = p(x) must cross the x-axis somewhere,
and this would give a real root of p. (This intuitive argument is justified by the
intermediate value theorem from analysis.)

Lemma 13.5. If A 2 O(3), 1 or �1 is an eigenvalue.

Proof. By the previous lemma, there exists a nonzero vector v = [x, y, z]T 2 R3

and real number � such that Av = �v. Since a multiple of v will satisfy the same
conditions, we can assume that the square of the length vT v = x2+y2+z2 = 1.
It follows that

�2 = (�v)T (�v) = (Av)T (Av) = vTATAv = vT v = 1

Theorem 13.6. A matrix in SO(3) is a rotation.

Proof. Let R 2 SO(3). By the previous lemma, ±1 is an eigenvalue.
We divide the proof into two cases. First suppose that 1 is eigenvalue. Let

v3 be an eigenvector with eigenvalue 1. We can assume that v3 is a unit vector.
We can complete this to an orthonormal set v1, v2, v3. The vectors v1 and v2
form a basis for the plane v?3 perpendicular to v3. The matrix A = [v1, v2, v3]
is orthogonal, and we can assume that it is in SO(3) by switching v1 and v2 if
necessary. It follows that

RA = [Rv1, Rv2, Rv3] = [Rv1, Rv2, v3]

remains orthogonal. Therefore Rv1, Rv2 lie in v?3 . Thus we can write

R(v1) = av1 + bv2

R(v2) = cv1 + dv2

R(v3) = v3

The matrix

A�1RA =

2

4
a b 0
c d 0
0 0 1

3

5

lies in SO(3). It follows that the block


a b
c d

�
lies in SO(2), which means that

it is a plane rotation matrix R(✓). It follows that R = R(✓, v3).
Now suppose that �1 is an eigenvalue and let v3 be an eigenvector. Defining

A as above, we can see that

A�1RA =

2

4
a b 0
c d 0
0 0 �1

3

5
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This time the upper 2⇥ 2 is block lies O(2) with determinant �1. This implies
that it is a reflection. This means that there is a nonzero vector v in the plane
v?3 such Rv = v. Therefore R also +1 as an eigenvalue, and we have already
shown that R is a rotation.

From the proof, we extract the following useful fact.

Corollary 13.7. Every matrix in SO(3) has +1 as an eigenvalue. If the matrix
is not the identity then the corresponding eigenvector is the axis of rotation.

We excluded the identity above, because everything would be an axis of
rotation for it. Let us summarize everything we’ve proved in one statement.

Theorem 13.8. The set of rotations in R3 can be identified with SO(3), and
this forms a group.

13.9 Exercises

1. Check that unlike SO(2), SO(3) is not abelian. (This could get messy, so
choose the matrices with care.)

2. Given two rotations R
i

= R(✓
i

, v
i

), show that the axis of R2R1R
�1
2 is

R2v1. Conclude that a normal subgroup of SO(3), di↵erent from {I}, is
infinite.

3. Check that 2

4
cos ✓ � sin ✓ 0
sin ✓ cos ✓ 0
0 0 1

3

5

has 1, e±i✓ as complex eigenvalues. With the help of the previous exercise
show that this holds for any rotation R(✓, v).

4. Show the map f : O(2) ! SO(3) defined by

f(A) =


A 0
0 det(A)

�

is a one to one homomorphism. Therefore we can view O(2) as a subgroup
of SO(3). Show that this subgroup is the subgroup {g 2 SO(3) | gr =
±r}, where r = [0, 0, 1]T .

5. Two subgroups H
i

✓ G of a group are conjugate if for some g 2 G,
H2 = gH1g�1 := {ghg�1 | h 2 H1}. Prove that H1

⇠= H2 if they are
conjugate. Is the converse true?

6. Prove that for any nonzero vector v 2 R3, the subgroup {g 2 SO(3) |
gv = ±v} (respectively {g 2 SO(3) | gv = v}) is conjugate, and there-
fore isomorphic, to O(2) (respectively SO(2)). (Hint: use the previous
exercises.)

63


