Chapter 5

Finite sets, counting and group theory

Let $\mathbb{N}=\{0,1,2\ldots\}$ be the set of natural numbers. Given n, let $[n]=\{x\in\mathbb{N}\mid x< n\}$. So that $[0]=\emptyset$ is the empty set, and $[n]=\{0,1,\ldots,n-1\}$ if n>0. A set X is called *finite* if there is a one to one onto function (also called a one to one correspondence) $f:[n]\to X$ for some $n\in\mathbb{N}$. The choice of n is unique (which we will accept as a fact), and is called the cardinality of X, which we denote by |X|.

Lemma 5.1. If X is finite and $g: X \to Y$ is a one to one correspondence, then Y is finite and |Y| = |X|.

Proof. By definition, we have a one to one correspondence $f:[n] \to X$, where n=|X|. Therefore $g \circ f:[n] \to Y$ is a one to one correspondence.

Proposition 5.2. If a finite set X can be written as a union of two disjoint subsets $Y \cup Z$, then |X| = |Y| + |Z|. (Recall that $Y \cup Z = \{x \mid x \in Y \text{ or } x \in Z\}$, and disjoint means their intersection is empty.)

Proof. Let $f:[n] \to Y$ and $g:[m] \to Z$ be one to one correspondences. Define $h:[n+m] \to X$ by

$$h(i) = \begin{cases} f(i) & \text{if } i < n \\ g(i-n) & \text{if } i \ge n \end{cases}$$

This is a one to one correspondence.

A partition of X is a decomposition of X as a union of subsets $X = Y_1 \cup Y_2 \cup \ldots Y_n$ such that Y_i and Y_j are disjoint whenever $i \neq j$.

Corollary 5.3. If $X = Y_1 \cup Y_2 \cup ... Y_n$ is a partition, then $|X| = |Y_1| + |Y_2| + ... |Y_n|$.

Proof. We have that

$$|X| = |Y_1| + |Y_2 \cup \dots Y_n| = |Y_1| + |Y_2| + |Y_3 \cup \dots Y_n| = \dots = |Y_1| + |Y_2| + \dots |Y_n|$$

Given a function $f: X \to Y$ and an element $y \in Y$, the preimage

$$f^{-1}(y) = \{ x \in X \mid f(x) = y \}$$

Proposition 5.4. If $f: X \to Y$ is a function, then

$$|X| = \sum_{y \in Y} |f^{-1}(y)|$$

Proof. The collection $\{f^{-1}(y)\}$ forms a partition of X.

The cartesian product of two sets is the set of ordered pairs

$$X \times Y = \{(x, y) \mid x \in X, y \in Y\}$$

Theorem 5.5. If X and Y are finite sets, then $|X \times Y| = |X||Y|$.

Proof. Let $p: X \times Y \to Y$ be the projection map defined by p(x,y) = y. Then

$$p^{-1}(y) = \{(x, y) \mid x \in X\}$$

and $(x,y) \to x$ gives a one to one correspondence to X. Therefore, by the previous corollary,

$$|X \times Y| = \sum_{y \in Y} |p^{-1}(y)| = |Y||X|$$

Let us apply these ideas to group theory.

Given a subgroup $H \subset G$ and $g \in G$, let $gH = \{gh \mid h \in H\}$. This is called a (left) coset. For example, when $G = S_3$ and $H = \{I, (123), (321)\}$, the cosets are

$$IH = (123)H = (321)H = H$$

and

$$(12)H = (13)H = (23)H = \{(12), (13), (23)\}\$$

Thus the collection of distinct cosets gives a partition of S_3 into rotations and flips, and there are the same number of each. We will prove that is a similar statement in general.

Lemma 5.6. If two cosets g_1H and g_2H have a nonempty intersection then $g_1H = g_2H$.

Proof. If $g \in g_1H \cap g_2H$, we can write $g = g_1h_1 = g_2h_2$ with $h_1, h_2 \in H$. Then $g_2 = g_1h_1h_2^{-1}$. If $h \in H$, then $h_1h_2^{-1}h \in H$ because H is a subgroup. Therefore $g_2h = g_1h_1h_2^{-1}h \in g_1H$. This proves that $g_2H \subseteq g_1H$. The same argument, with g_1 and g_2 interchanged, shows that $g_1H \subseteq g_2H$. Therefore these sets are equal.

Lemma 5.7. G/H is a partition of G

Proof. Every element $g \in G$ lies in the coset gH. Therefore G is the union of cosets. By the previous lemma, the cosets are pairwise disjoint.

Lemma 5.8. If H is finite, |gH| = |H| for every g.

Proof. Let $f: H \to gH$ be defined by f(h) = gh. Then f is onto. Suppose that $f(h_1) = f(h_2)$. Then $h_1 = g^{-1}gh_1 = g^{-1}gh_2 = h_2$. Therefore f is also one to one. Consequently |gH| = |H|.

Theorem 5.9 (Lagrange). If $H \subseteq G$ is a subgroup of a finite group, then

$$|G| = |H| \cdot |G/H|$$

In particular, the order of H divides the order of G.

Proof. By the previous results, G/H is a partition of G into |G/H| sets each of cardinality |H|.

Given $g \in G$, the *order* of g is the smallest positive n such that $g^n = e$. This was shown in a previous exercise to be the order of the subgroup generated by g. Therefore:

Corollary 5.10. The order of any element $g \in G$ divides the order of G.

Corollary 5.11. If the order G is a prime number, then G is cyclic.

Proof. Let p = |G|. By the previous corollary $g \in G$ divides p. If $g \neq e$, then the order must be p. Therefore G is generated by g.

One can ask whether the converse of the first corollary holds, that is if |G| is divisible by n, does G necessarily have element of order n? The answer is no, it would fail for n = |G| unless G is cyclic. Even if we require n < |G| then it may still fail (exercise 9). However, if n is prime, then it is true.

Theorem 5.12 (Cauchy). If the order of a finite group G is divisible by a prime number p, then G has an element of order p

Proof when p=2. Suppose that G is even. We can partition G into $A=\{g\in G\mid g^2=e\}$ and $B=\{g\in G\mid g^2\neq e\}$. Therefore |G|=|A|+|B|. Every element $g\in B$ satisfies $g\neq g^{-1}$. Therefore |B| is even, because we can write B as a disjoint union of pairs $\{g,g^{-1}\}$. Therefore |A|=|G|-|B| is even. Furthermore $|A|\geq 1$ because $e\in A$. It follows that A contains an element different from e, and this must have order 2.

Next, we want to develop a method for computing the order of a subgroup of S_n .

Definition 5.13. Given $i \in \{1, ..., n\}$, the orbit $Orb(i) = \{g(i) \mid g \in G\}$. A subgroup $G \subseteq S_n$ is called transitive if for some i, $Orb(i) = \{1, ..., n\}$.

Definition 5.14. Given subgroup $G \subseteq S_n$ and $i \in \{1, ... n\}$, the stabilizer of i, is $Stab(i) = \{f \in G \mid f(i) = i\}$

Theorem 5.15 (Orbit-Stabilizer theorem). Given a subgroup $G \subseteq S_n$, and $i \in \{1, ..., n\}$ then

$$|G| = |\operatorname{Orb}(i)| \cdot |\operatorname{Stab}(i)|$$

In particular,

$$|G| = n|\operatorname{Stab}(i)|$$

if G is transitive.

Proof. We define a function $f: G \to \operatorname{Orb}(i)$ by f(g) = g(i). The preimage $T = f^{-1}(j) = \{g \in G \mid g(i) = j\}$. By definition if $j \in \operatorname{Orb}(i)$, there exists $g_0 \in T$. We want to show that $T = g_0 \operatorname{Stab}(i)$. In one direction, if $h \in \operatorname{Stab}(i)$ then $g_0 h(i) = j$. Therefore $g_0 h \in T$. Suppose $g \in T$. Then $g = g_0 h$ where $h = g_0^{-1}g$. We see that $h(i) = g_0^{-1}g(i) = g_0^{-1}(j) = i$. Therefore, we have established that $T = g_0 \operatorname{Stab}(i)$. This shows that

$$|G| = \sum_{j \in \operatorname{Orb}(i)} |f^{-1}(j)| = \sum_{j \in \operatorname{Orb}(i)} |\operatorname{Stab}(i)| = |\operatorname{Orb}(i)| \cdot |\operatorname{Stab}(i)|$$

Corollary 5.16. $|S_n| = n!$

Proof. We prove this by mathematical induction starting from n=1. When n=1, S_n consists of the identity so $|S_1|=1=1!$. In general, assuming that the corollary holds for n, we have prove it for n+1. The group S_{n+1} acts transitively on $\{1,\ldots,n+1\}$. We want to show that there is a one to one correspondence between $\operatorname{Stab}(n+1)$ and S_n . An element of $f \in \operatorname{Stab}(n+1)$ looks like

$$\begin{pmatrix} 1 & 2 & \dots n & n+1 \\ f(1) & f(2) & \dots f(n) & n+1 \end{pmatrix}$$

Dropping the last column yields a permutation in S_n , and any permutation in S_n extends uniquely to an element of $\operatorname{Stab}(n+1)$ by adding that column. Therefore we have established the correspondence. It follows that $|\operatorname{Stab}(n+1)| = |S_n| = n!$. Therefore

$$|S_{n+1}| = (n+1)|\operatorname{Stab}(n+1)| = (n+1)(n!) = (n+1)!$$

5.17 Exercises

- 1. Given finite sets Y, Z. Prove that $|Y \cup Z| = |Y| + |Z| |Y \cap Z|$. Recall that the intersection $Y \cap Z = \{x \mid x \in Y \text{ and } x \in Z\}$.
- 2. If $B \subseteq A$, prove that |A B| = |A| |B|, where $A B = \{a \mid a \in A \text{ and } a \notin B\}$. Use this to prove that the set of distinct pairs $\{(x_1, x_2) \in X \times X \mid x_1 \neq x_2\}$ has $|X|^2 |X|$ elements.
- 3. We can use the above counting formulas to solve simple exercises in probability theory. Suppose that a 6 sided dice is rolled twice. There are $6 \times 6 = 36$ possible outcomes. Given a subset S of these outcomes, called an *event*, the probability of S occurring is |S|/36.
 - (a) What is the probability that a five or six is obtained on the first role?
 - (b) What is the probability that a five or six is obtained in either (or both) roll(s)?
 - (c) What is probability that the same number is rolled twice?
 - (d) What is probability that different numbers be obtained for each roll? Explain how you got your answers.
- 4. Let $G \subseteq S_n$ be a subgroup.
 - (a) Prove that the stablizer H of an element i is a subgroup of G.
 - (b) A subgroup $H \subset G$ is a normal subgroup if $ghg^{-1} \in H$ for all $g \in G$ and $h \in H$. Is the stabilizer a normal subgroup?
- 5. By the previous results, the order of an element $g \in S_n$ must divide n!. We can do much better. Find a better bound using the cycle decomposition.
- 6. What is the probability that an element of S_5 has order 2?
- 7. Choose two elements g_1, g_2 from a finite group G. What is the probability that $g_1g_2 = e$?
- 8. Determine all the transitive subgroups of S_3 .
- 9. Let $\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \dots \mathbb{Z}_{m_n} = \{(a_1, \dots, a_n) \mid a_i \in \mathbb{Z}_{m_i}\}$ be the set of vectors.
 - (a) Show that this becomes a group using $(a_1, \ldots, a_n) + (b_1, \ldots, b_n) = (a_1 + b_1, \ldots, a_n + b_n)$ with mod m_i arithmetic in each slot.
 - (b) Show that the order of this group is $m_1 m_2 \dots m_n$.
 - (c) Let m be the least common multiple of m_1, \ldots, m_n . Show that all elements have order dividing m.
- 10. Prove that Cauchy's theorem holds for the group defined in the previous exercise.