Chapter 3

Integers and Abelian groups

The set integers $\mathbb{Z} = \{\ldots -2, -1, 0, 1, \ldots\}$ is obtained by adding negative numbers to the set of natural numbers. This makes arithmetic easier.

Addition satisfies the rules (1.1), (1.2), (1.3) as before. In addition, there is new operation $n \mapsto -n$ satisfying

For each
$$n \in \mathbb{Z}$$
, $n + (-n) = 0$ (3.1)

The cancellation law becomes redundant as we will see.

We will now abstract this:

Definition 3.1. An abelian group consists of a set A with an associative commutative binary operation * and an identity element $e \in A$ satisfying a * e = a and such that any element a has an inverse a' which satisfies a * a' = e.

Abelian groups are everywhere. Here list a few some examples.

Let $\mathbb{Q} = \{a/b \mid a, b \in \mathbb{Z}, b \neq 0\}$ be the set of rational numbers, the \mathbb{R} the set of real numbers and \mathbb{C} the set of complex numbers.

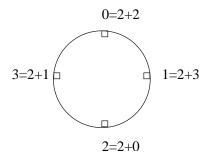
Example 3.2. The sets \mathbb{Z} , \mathbb{Q} , \mathbb{R} or \mathbb{C} with *=+ and e=0 are abelian groups.

Example 3.3. The set \mathbb{Q}^* , (or \mathbb{R}^* or \mathbb{C}^*) of nonzero rational (or real or complex) numbers with $*=\cdot$ (multiplication) and e=1 is an abelian group. The inverse in this case is just the reciprocal.

Example 3.4. Let n be a positive integer. Let $\mathbb{Z}^n = \{(a_1, a_2, \dots a_n) | a_1, \dots a_n \in \mathbb{Z}\}$. We define $(a_1, \dots a_n) + (b_1, \dots b_n) = (a_1 + b_1, \dots a_n + b_n)$ and $\mathbf{0} = (0, \dots 0)$. Then \mathbb{Z}^n becomes an abelian group. \mathbb{Z} can be replaced by \mathbb{Q} , \mathbb{R} or \mathbb{C} and these examples are probably familiar from linear algebra.

Example 3.5. Let n be a positive integer, $\mathbb{Z}_n = \{0, 1, \dots n-1\}$. Arrange these on the face of a "clock". We define a new kind of operation \oplus called addition $mod \, n$. To compute $a \oplus b$, we set the "time" to a and then count off b hours. We'll give a more precise description later. Unlike the previous examples, this is a finite abelian group.

Often, especially in later sections, we will simply use + instead \oplus because it easier to write. We do this in the diagram below:



Here's the addition table for \mathbb{Z}_8 .

\oplus	0	1	2	3	4	5	6	7 0 1 2 3 4 5 6
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

Notice that the table is symmetric (i.e. interchanging rows with columns gives the same thing). This is because the commutative law holds. The fact that that 0 is the identity corresponds to the fact that the row corresponding 0 is identical to the top row. There is one more notable feature of this table: every row contains each of the elements $0, \dots 7$ exactly once. A table of elements with this property is called a *latin square*. As we will see this is always true for any abelian group.

We can now define the precise addition law for \mathbb{Z}_n . Given $a, b \in \mathbb{Z}_n$, $a \oplus b = r(a+b,n)$, where r is the remainder introduced before.

When doing calculations in Maple, we can use the mod operator. For example to add $32 \oplus 12$ in \mathbb{Z}_{41} , we just type

$$32 + 12 \mod 41$$
;

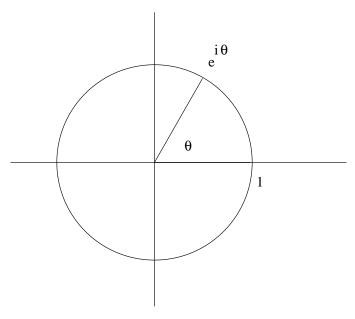
Let n be a positive integer, a complex number z is called an nth root of unity if $z^n = 1$. Let μ_n be the set of all nth roots of unity. For example, $\mu_2 = \{1, -1\}$ and $\mu_4 = \{1, -1, i, -i\}$.

Example 3.6. μ_n becomes an abelian group under multiplication

To see that this statement make sense, note that given two elements $z_1, z_2 \in \mu_n$, their product lies in μ_n since $(z_1z_2)^n = z_1^n z_2^n = 1$ and $1/z_1 \in \mu_n$ since

 $(1/z_1)^n=1.$ We can describe all the elements of μ_n with the help of Euler's formula:

$$e^{i\theta} = \cos\theta + i\sin\theta.$$



Lemma 3.7.
$$\mu_n = \{e^{i\theta} \mid \theta = 0, \frac{2\pi}{n}, \frac{4\pi}{n}, \dots \frac{2(n-1)\pi}{n}\}$$

Proof. The equation $z^n=1$ can have at most n solutions since it has degree n (we will prove this later on). So it's enough to verify that all of the elements on the right are really solutions. Each element is of the form $z=e^{i\theta}$ with $\theta=2\pi k/n$ with k an integer. Then

$$z^n = e^{in\theta} = \cos(2\pi k) + i\sin(2\pi k) = 1.$$

The lemmas says that the elements are equally spaced around the unit circle of $\mathbb{C}.$

Since $e^{i\theta_1}e^{i\theta_2} = e^{i(\theta_1 + \theta_2)}$, multiplication amounts to adding the angles. This sounds suspiciously like the previous example. We will see they are essentially the same.

Lemma 3.8. (Cancellation) Suppose that (A, *, e) is an abelian group. Then a * b = a * c implies b = c.

Proof. By assumption, there exists a' with a'*a=a*a'=e. Therefore

$$a' * (a * b) = a' * (a * c)$$

$$(a'*a)*b = (a'*a)*c$$

$$e * b = e * c$$
$$b = c.$$

Corollary 3.9. Given a, there is a unique element a', called the inverse, such that a * a' = e.

Lemma 3.10. The multiplication table

of any abelian group $A = \{a_1, a_2, \ldots\}$ forms a symmetric latin square.

Proof. The symmetry follows from the commutative law. Suppose that $A = \{a_1, a_2, \ldots\}$. Then the *i*th row of the table consists of $a_i * a_1, a_i * a_2 \ldots$ Given $a \in A$, the equation $a = a_i * (a_i' * a)$ shows that a occurs somewhere in this row. Suppose that it occurs twice, that is $a_i * a_j = a_i * a_k = a$ for $a_j \neq a_k$. Then this would contradict the cancellation lemma.

Let (A, *, e) be a group. Given $a \in A$ and $n \in \mathbb{Z}$, define a^n by

$$a^{n} = \begin{cases} a*a \dots a \ (n \text{ times}) \text{ if } n > 0 \\ e \text{ if } n = 0 \\ a'*a' \dots a'(-n \text{ times}) \text{ if } n < 0 \end{cases}$$

Often the operation on A is written as +, in which case the inverse of a is usually written as -a, and we write na instead of a^n . When $A = \mathbb{Z}$, this nothing but the definition of multiplication. It's possible to prove the associative, commutative and distributive laws for \mathbb{Z} , but we'll skip this.

3.11 Exercises

1. Let $A = \{e, a, b\}$ with e, a, b distinct and the following multiplication table:

Is A an abelian group? Prove it, or explain what goes wrong.

2. Let $A = \{e, a\}$ with $a \neq e$ and the following multiplication table:

Is A an abelian group? Prove it, or explain what goes wrong.

- 3. Let (A, *, e) be an abelian group. Let a' denote the inverse of a. Prove that e' = e, (a')' = a and (a * b)' = a' * b'.
- 4. With notation as above, prove that $(a^n)' = (a')^n$ for any natural number n by induction. This proves $(a^n)^{-1} = (a^{-1})^n = a^{-n}$ as one would hope.
- 5. Let (A, *, e) and $(B, *, \epsilon)$ be two abelian groups. Let $A \times B = \{(a, b) \mid a \in A, b \in B\}$. Define $(a_1, b_1) * (a_2, b_2) = (a_1 * a_2, b_1 * b_2)$ and $E = (e, \epsilon)$. Prove that $(A \times B, *, E)$ is an abelian group. This is called the direct product of A and B. For example $\mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}$.
- 6. Write down the multiplication tables for μ_2, μ_3, μ_4 and μ_5 .
- 7. An element $\omega \in \mu_n$ is called a primitive root if any element can be written as a power of ω . Check that $e^{2\pi i/5} \in \mu_5$ is primitive. Determine all the others in this group.