
Chapter 2

Homology

Basic Refs:

1. Hatcher, Algebraic topology

2. Rotman, Intro to homological algebra

3. Spanier, Algebraic topology

4. Weibel, An introduction to homological algebra

2.1 Simplicial complexes

Homology came out of algebraic topology. So we review the basic constructions
for intuition and motivation. Recall that a (simple) graph consists of a set of
vertices V , and a set of edges E between pairs of vertices. An edge can be
regarded as a 2-element subset of V . A simplicial complex is a generalization,
where one also allows triangles etc. More formally, it is a pair S = (V,⌃)
consisting of a set V and a collection of finite nonempty subsets ⌃ of V called
simplices. We require that all singletons are in ⌃, and any nonempty subset of
� 2 ⌃ is also in ⌃. If � 2 ⌃, has cardinality i+ 1, it is called an i-simplex.

Example 2.2. In the example below
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V = {1, 2, . . . 6} and ⌃ consists of the 2-simplices {1, 2, 6}, {2, 3, 4}, {4, 5, 6} and

all nonempty subsets of them.

Simplices in the above sense, are combinatorial models for simplices in the
geometric sense. The standard geometric n-simplex �n is the convex hull of
unit vectors (1, 0, . . .), (0, 1, 0 . . .), . . . 2 Rn+1. Just as a graph gives rise to a
topological space, where edges are replaced by arcs, a simplicial complex can
also be turned in a topological space |S|, where n-simplices are replaced by
spaces homeomorphic to geometric simplices. (see Spanier Chap 3 for details).

An orientation on a 2-simplex {v1, v2} is a simply an ordering: either [v1, v2]
or [v2, v1]. In general, an orientation of � = {v1, v2, . . . vn} is an An-orbit of
orderings (where An ⇢ Sn is the alternating group). Thus every simplex has
exactly two orientations. Given an oriented simplex [v0, . . . , vn], we identify
�[v0, . . . , vn] with the same simplex with opposite orientation. Its boundary is
the formal sum

@[v0, . . . , vn] = [v1, . . . , vn]� [v0, v2, . . . , vn] + . . . =
X

i

(�1)i[v0, . . . , v̂i, . . . vn]

We call finite formal linear combination of n-simplices, as above, an n-chain.
These form a free abelian group Cn(S). The above formula determines a homo-
morphism

@n : Cn(S) ! Cn�1(S)

We usually drop the subscript, and write @. Here is the key fact.

Proposition 2.3. @n�1@n = 0, or more succinctly @
2 = 0.

Proof. We do this when n = 2

@
2[v0v1v2] = @([v1v2]� [v0v2] + [v0v1]) = (v1 � v2)� (v0 � v2) + (v0 � v1) = 0

The general case is not essentially harder. Expand @
2[v0 . . . vn], then one can

see that the term [v0, . . . v̂i . . . v̂j . . .] occurs twice with opposite sign.

Elements of the kernel @ are called cycles, and elements of the image of @
are called the boundaries.

Corollary 2.4. Every boundary is a cycle.

One can ask about the converse. In general, the answer is no. A measure of
the failure is

Definition 2.5. The nth homology group of S is

Hn(S) =
Zn(S)

Bn(S)

where

Zn(S) = ker @n

Bn(S) = im @n+1
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Example 2.6. Let S be the simplicial complex of example 2.2. Then � =
[2, 4] + [4, 6] + [6, 2] is a cycle which is not a boundary, so H1(S) 6= 0. In

fact, with enough patience, one can show that H1(S) is the infinite cyclic group

generated by �.

There is a dual notion. The group of cochains

C
n(S) = HomZ(Cn(S),Z)

This has a coboundary homomorphism

d : Cn(S) ! C
n+1(S)

defined by the dual to @.

Definition 2.7. The nth cohomology group of S is

H
n(S) =

ker d : Cn(S) ! C
n+1(S)

im d : Cn�1(S) ! Cn(S)

Cohomology is roughly dual to homology (this is correct when homology is
torsion free, but otherwise the precise relation is more subtle), so it may not be
clear at first why it is useful. However, cohomology does carry extra structure,
namely a product, called cup product

H
n(S)⇥H

m(S) ! H
n+m(S)

which makes cohomology into a graded ring. Given n and m cochains f and g,
their product is given by the formula

(f [ g)[v0, ..., vn+m] = f [v0, ..., vn]g[vn, ..., vn+m]

A fact, which is at first glance, is surprising is that homology and cohomology
on depends on the topological space |S|, and not on the triangulation. This
can be done comparing to singular (co)homology, which doesn’t depend on a
triangulation. The group of singular chains Sn(X), of a space X, is the free
abelian groups generated by continuous maps from �n ! X. The boundary
is essentially identical to the formula given previously. We refer to Hatcher or
Spanier for a detailed treatment.

2.8 Complexes

We now abstract the ideas from the first section.

Definition 2.9. A chain complex, or just complex, is a collection of abelian

groups (or modules) Cn, n 2 Z and homomorphisms (called di↵erentials) d :
Cn ! Cn�1 satisfying d

2 = 0. The nth homology is

Hn(C•) =
ker d : Cn ! Cn�1

im d : Cn+1 ! Cn
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It is technically convenient to allow the index to lie in Z. Although in
practice, we may only be given Cn, n � 0. In which case, we set Cn = 0 when
n < 0 We will refer to such complexes as positive.

The following is obvious.

Lemma 2.10. The sequence C• is exact i↵ Hn(C•) = 0 for all n. In this case,

C• is also called acyclic.

One can define a cochain complex C
• in similar fashion, except that di↵er-

entials go the other way. Its cohomology

H
n(C•) =

ker d : Cn ! C
n+1

im d : Cn�1 ! Cn

We note that using a change of variable

Cn = C
�n

allows us to convert cochain complexes to complexes. Thus there is no real
di↵erence between these notions.

Definition 2.11. A morphism of complexes, or chain map, f : C• ! D• is

a collection of homomorphisms f : Cn ! Dn, such that df = fd. With this

notion, the collection of complexes of R-modules becomes a category C(ModR).

The following is straightforward.

Lemma 2.12. A morphism of complexes f : C• ! D• induces a homomorphism

of homology groups f⇤ : Hn(C•) ! Hn(D•). In fact, Hn gives a functor from

C(ModR) ! ModR.

A simplicial map of simplicial complexes f : S = (V,⌃) ! S
0 = (V 0

,⌃0)
is a map of sets f : V ! V

0 such that the image of any simplex of S is a
simplex of S0. It should be clear that a simplicial map f induces a morphism
C•(S) ! C•(S0), and therefore homomorphisms f⇤ : Hn(S) ! Hn(S0). More
generally, continuous maps for space induce chain maps on the singular chain
complex, and therefore homomorphisms on homology.

We define an sequence of morphisms of complexes

C• ! C
0
• ! C

00
•

be exact if each sequence
Cn ! C

0
n
! C

00
n

is exact in the usual sense. The following result is fundamental. It will be used
many times over.

Theorem 2.13. If 0 ! C• ! C
0
• ! C

00
• ! 0 is an exact sequence of complexes,

then there is a long exact sequence

. . . Hn(C•) ! Hn(C
0
•) ! Hn(C

00
• )

@! Hn�1(C•) . . .
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The unlabelled maps in the above sequence are the obvious ones, the map @,
called a connecting map, is somewhat more mysterious, but it will be explained
below. Rotman (prop 6.9) gives a proof of this theorem. We will give di↵erent
argument. The starting point is the following standard fact, which is in fact a
special case of the theorem.

Proposition 2.14 (Snake lemma). Given a commutative diagram

A //

f

✏✏

B //

g

✏✏

C //

h

✏✏

0

0 // A
0

// B
0

// C
0

with exact rows, there is an exact sequence

ker f ! ker g ! kerh
@! coker f ! coker g ! cokerh

The first (resp. last) map above is injective (resp. surjective) if A ! B (resp.

B
0 ! C

0
) is injective (resp. surjective).

Proof. We only explain the connecting map. The remain details are straightfor-
ward, and best checked in private. Given c 2 kerh ✓ C, we can lift it to b 2 B.
Since g(b) maps to 0, in C

0, it lies in A
0. One can check that the image a of g(b)

in coker f does not depend on the choice of b. Set @c = a.

Proof of theorem 2.13. Let us write

Zn = ker d : Cn ! Cn�1

Bn = im d : Cn�1 ! Cn

etc. Apply the snake lemma to

0 // Cn+1
//

d

✏✏

C
0
n+1

//

d
0

✏✏

C
00
n+1

//

d
00

✏✏

0

0 // Cn
// C

0
n

// C
00
n

// 0

to get an exact sequence of kernels

0 ! ker d ! ker d0 ! ker d00

and an exact sequence of cokernels

coker d ! coker d0 ! coker d00 ! 0

(We won’t use the fact that these sequences fit together.) These can be rewritten
as

0 ! Zn+1 ! Zn+1 ! Z
00
n+1
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and
Cn/Bn ! C

0
n
/B

0
n
! C

00
n
/B

00
n
! 0

Using these for m = n, n+ 2 yields a diagram

Cm/Bm
//

d

✏✏

C
0
m
/B

0
m

//

d
0

✏✏

C
00
m
/B

00
m

//

d
00

✏✏

0

0 // Zm�1
// Z

0
m�1

// Z
00
m�1

Apply the snake lemma on more time to get a six term exact sequence

Hm(C•) ! Hm(C 0
•) ! Hm(C 00

• )
@! Hm�1(C•) . . .

These can be spliced together to obtain the infinite sequence.

2.15 Homotopy

We go back to topology to borrow another key idea. Let I = [0, 1]. Two
continuous maps f, g : X ! Y between topological spaces are homotopic if there
is a continuous map F : X ⇥ I ! Y , called a homotopy, such that f = F |X⇥{0}
and g = F |X⇥{1}. This means that f can be deformed to g. It’s easy to check
that it is an equivalence relation. The importance stems from the following fact

Theorem 2.16. If f, g : X ! Y are homotopic, then the induced maps f⇤, g⇤ :
Hn(X) ! Hn(Y ) are identical.

Here is an extremely useful consequence.

Corollary 2.17. Given a pair of continuous map f : X ! Y and g : Y ! X

such that f � g and g � f are homotopic to the identities, then f induces an

isomorphism between the homology of X and Y .

A space is contractible X if the identity is homotopic to a constant map.
For example, Rn is contractible.

Corollary 2.18. A contractible space has zero homology in positive degrees.

The key idea for proving the theorem is to introduce and algebraic version
of homotopy, which will be very important for us.

Definition 2.19. If f, g : C• ! D• are two morphisms between complexes, a

chain homotopy between them is a collection of homorphisms F : Cn ! Dn+1

such that dF + Fd = f � g. f and g are called chain homotopic if F exists.

To make sense of the last equation, we can draw the diagram

Cn

d
//

f�g

✏✏

F

||

Cn�1

F
||

Dn+1
d
// Dn
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A couple of remarks: After the theorem is proved, we will drop “chain” and
just say that f and g are homotopic, and we will refer to F as a homotopy.
Some authors take dF �Fd = f � g. It’s easy to go from one convention to the
other by Fn 7! (�1)nFn, where Fn denotes the map in degree n.

Theorem 2.20. If f, g : C• ! D• are chain homotopic, then f⇤ : Hn(C•) !
Hn(D•) and g⇤ : Hn(C•) ! Hn(D•) coincide.

Proof. Let F be chain homotopy. Given a 2 Hn(C•), we can represent it by
↵ 2 Cn such that d↵ = 0. f⇤(a) is the coset of f(↵). We have

f(↵) = dF (↵) + Fd(↵) + g(↵) = d(F (↵)) + g(↵)

which implies that f(a) = g(a).

Let us indicate to proof of theorem 2.16, referring to pp 112-113 of Hatcher
for precise details. The continuous maps f, g induce chain maps f̃ , g̃ : S•(X) !
Sn(Y ) on the singular chain complex. We have to construct a chain homotopy
F̃ between these. Recall that elements of Sn(X) are linear combinations of
continuous maps �n ! X. Such a map induces a continuous map from the
prism �n ⇥ I ! X ⇥ I. There is a natural, and purely combinatorial, way
to subdivide the prism �n ⇥ I into a finite union of n + 1 simplicies. When
composed with F , these simplices give elements of Sn+1(Y ). Let F̃ (�n ! X)
denote the sum of these elements with appropriate coe�cients of the form ±1 (
chosen so that adjacent interior faces cancel). Then one checks that this gives
the desired chain homotopy.

Definition 2.21. A contracting homotopy of a complex C• is a homotopy be-

tween identity and 0. A morphism f : C• ! D• is a homotopy equivalence if

there exists a morphism g : D• ! C• such that g � f and f � g are homotopic to

the identities of C• and D•.

As a corollary to theorem 2.20, we obtain

Proposition 2.22. A complex is acyclic if it possesses a contracting homotopy.

A homotopy equivalence induces an isomorphism on homology.

2.23 Mapping cones

We can define the category C(ModR) of complexes of R-modules, where the
objects are complexes and morphisms were defined above. Given complexes
C•, D•, Hom(C•, D•) has the structure of an abelian group compatible with
composition. Furthermore, standard constructions and notions such as di-
rect sums, kernels, cokernels and exact sequences make sense within C(ModR).
This amounts to saying that this is an abelian category. See Rotman section
5.5 for the precise definition. Given complexes C•, D•, let Null(C•, D•) ⇢
Hom(C•, D•) be the subset of morphisms homotopic to 0. This is easily seen
to be a subgroup. Let K(ModR) denote the category with the same objects
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as before, but morphisms from C• to D• are homotopy classes of morphisms
in C(ModR), or equivalently cosets Hom(C•, D•)/Null(C•, D•). This is still
an additive category since for example, the set of morphisms form and abelian
group, but it is not abelian. Among other problems, the kernel and cokernel of
a morphism need not exist in the homotopy category. If f and g are homotopic
maps, then the complexes ker f (resp. coker f) and ker g (resp. coker g) need
not be isomorphic in K(ModR). Fortunately, there is a reasonable substitute.
Given a morphism f : A• ! B•, we form a new complex C(f)• called the
mapping cone by

C(f)n = Bn �An�1

with di↵erential
d(x, y) = (dx� f(y), dy)

This is also analogue of a topological notion, which is explained on pp 18-24 of
Weibel’s book.

Lemma 2.24. If f and g are homotopic, then C(f)• and C(g)• are isomorphic.

Proof. Let F be a homotopy from f to g. Then (x, y) 7! (x � F (y), y) is
morphism of C(f) ! C(g) with inverse (x, y) 7! (x+ F (y), y).

The mapping cone can play the role of either the kernel or the cokernel under
appropriate conditions. Let us explain the second. Suppose that

0 ! A•
f! B•

g! C• ! 0

is exact in C(ModR), and that for each n there are splittings

sn : Cn ! Bn

for g. Note that we do not require that the splittings are compatible with
di↵erentials.

Lemma 2.25. The morphism C(g)• ! C• given by (x, y) 7! g(y) is an iso-

morphism in K(ModR) with inverse

z 7! (sn(z), sn�1d(z)� dsn(z))

We omit the proof, which is a long calculation. Under these conditions, we
see that the connecting map Hn(C•) ! Hn�1(A•) is induced by the projection
C(g)• ! A•�1.
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