
Chapter 3

Ext groups

Refs.

1. Atiyah-Macdonald, Commutative algebra

2. Rotman, Homological algebra

3.1 Extensions

Given two R-modules A and C, an extension of C by A is a short exact sequence

0 ! A ! B ! C ! 0

(NB: This terminology is opposite of what Rotman uses, but it is better aligned
with the notation to be introduced.) Let us say that another extension

0 ! A ! B
0 ! C ! 0

is equivalent to the first if they can be put into a commutative diagram

0 // A //

id

✏✏

B //

�

✏✏

C //

id

✏✏

0

0 // A // B
0

// C // 0

Lemma 3.2. The map � above is an isomorphism. Equivalence of extensions

is an equivalence relation.

Proof. The first statement, which is a special case of the 5-lemma, is an easy
diagram chase. We will omit the proof. Since this implies that �

�1 exists, we
see that this relation is symmetric. It is obviously reflexive, and transitive (use
the composite of � and the corresponding map in the third extension).
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Let ext(C,A) denote the set of equivalence classes of extensions. Our goal
is to compute this. First observe that this set has a distinguished element

0 ! A ! A� C ! C ! 0

which we call the trivial extension, and denote this by 0. We say that an
extension

0 ! A
j! B

p! C ! 0

splits if there is a homomorphism i : C ! B such that p � i = id.

Lemma 3.3. An extension splits i↵ it is equivalent to the trivial extension.

Proof. Given a split extension as above, define � : A � C ! B by �(a, c) =
j(a) + s(c). Conversely, if we have such a morphism the s(c) = �(0, c) gives a
splitting.

We can now compute it in one case.

Proposition 3.4. C is projective if and only if ext(C,A) = {0} for every A.

Proof. If C is projective, we proved early that any surjective morphism to C

splits. Therefore ext(C,A) = 0.
Conversely, suppose ext(C,A) for every A. Given

P

f

✏✏

0 // K // M
⇡
// N // 0

let L = {(m, p) 2 (M,P ) | f(m) = ⇡(p)} be the pullback. Then we have an
extension

0 ! K ! L ! P ! 0

This has a splitting s : P ! L by assumption. Composing this with the
projection L ! M , yields a map P ! M lifting f .

In order to try to compute ext(C,A) in general, we can try to reduce C to
a projective module. We choose a surjection ⇡ : P ! C, with P projective.
We could take P to be a free module on a set of generators for P , for example,
Then form the sequence

0 ! K
i! P

⇡! C ! 0

Define

⇡Ext(C,A) = coker(Hom(P,A) ! Hom(K,A))

We will prove the following later in more form.

Proposition 3.5. The isomorphism class of ⇡Ext(C,A) is independent of f .
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Henceforth, we write Ext(C,A) for ⇡Ext(C,A).

Theorem 3.6. There is a bijection ext(C,A) ⇠= Ext(C,A) preserving 0.

Proof. Given f : K ! A, let

Qf = P �A/{(i(k), f(k)) | k 2 K}

be the pushout. The fits into an extension

0 ! A ! Qf ! C ! 0

If f = F |K , with F 2 Hom(P,A), then �(p, a) = (F (p), a) is an equivalence to
the trivial extension. Similarly, one can check that if g : K ! A is another map
such that g � f lies in the image of Hom(P,A), then

0 ! A ! Qg ! C ! 0

is equivalent to the previous extension. Therefore we have constructed a map
from Ext(C,A) ! ext(C,A) preserving 0.

Given an extension of C by A,

0 // K //

f

✏✏

P //

g

✏✏

C //

id

✏✏

0

0 // A // B // C // 0

we can find g and therefore f using the projectivity of P . This can be checked
to give the inverse ext(C,A) ! Ext(C,A).

Corollary 3.7. ext(C,A) has the structure of an abelian group.

See Rotman section 7.2.1 for an explicit description of the group structure
in terms of extensions.

Example 3.8. Let R = Z. Consider the exact sequence

0 ! Z n! Z ! Z/nZ ! 0

where n 6= 0. Then “Hom-ing” into A yields

A
n! A ! Ext(Z/nZ, A) ! 0

Therefore Ext(Z/nZ, A) ⇠= A/nA. The calculation can be upgraded to calculate

Ext(B,A) for any finitely generated abelian group, Writing B =
L

Z/nZ�ZN
,

Ext(Z/nZ, A) ⇠=
L

A/niA.

So far we have been borrowing ideas from topology. Now we are in a position
to repay the debt. We defined the cohomology of a simplicial complex earlier,
and said that it is roughly dual to homology. Here is a the precise statement.
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Theorem 3.9 (Universal coe�cient theorem). Given a simplicial complex S,

there is an isomorphism

H
n(S) ⇠= Hom(Hn(S),Z)� Ext(Hn�1(S),Z)

The argument is slightly simpler for finite simplicial complexes. So let us
assume this. Then the result will be a consequence of the following result from
pure homological algebra.

Theorem 3.10. If F• is a complex of finitely generated free abelian groups,

there is an isomorphism

H
n(Hom(F•,Z)) ⇠= Hom(Hn(F•),Z)� Ext(Hn�1(F•),Z)

Proof. Let Bn ✓ Zn ✓ Fn be the subgroups of boundaries and cycles. These
are free abelian by basic algebra. Therefore the exact sequences

0 ! Zn ! Fn ! Bn�1 ! 0

is split. It follows that

0 ! Hom(Bn�1,Z) ! Hom(Fn,Z) ! Hom(Zn,Z) ! 0

is also split exact. This can be viewed as an exact sequence of cochain complexes
where the complexes on the left and right have zero di↵erential. Having zero
di↵erential implies that Hom(Bn�1,Z) and Hom(Zn,Z) are the cohomology
groups. The long exact sequence for cohomology is

Hom(Zn�1,Z) ! Hom(Bn�1,Z) ! H
n(Hom(Fn,Z)) ! Hom(Zn,Z) ! Hom(Bn,Z)

Using the exact sequences

0 ! Zn ! Bn ! Hn(F•) ! 0

we can write the previous sequence as

0 ! Ext(Hn�1,Z) ! H
n(Hom(Fn,Z)) ! Hom(Hn,Z) ! 0

Finally, note that Ext is a torsion group and Hom is torsion free, so this must
split canonically.

3.11 Projective resolutions

Let M be an R-module. Choose a projective module P0 and a surjection P0 !
M . Let K0 be the kernel. Choose a surjection from another projective module
P1 ! K0. Let K1 be the kernel of this, and repeat. Composing Pi ! Ki�1

with Ki�1 ! Pi�1 yields an exact sequence

. . . P2 ! P1 ! P0 ! M ! 0

where each Pi is projective. This is called a projective resolution of M . We
have proved that such things exist.
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Lemma 3.12. Every module possesses a projective resolution.

Such resolutions are not unique, because choices are involved. However, they
are unique in a weaker sense that any two projective resolutions are homotopy
equivalent.

Theorem 3.13. If Q• ! M ! 0 is an exact sequence, so perhaps another

projective resolution. Then there exists a morphism f : P• ! Q• such that

P0

f

✏✏   

Q0
// M

commutes. This is unique up to homotopy, i.e. any other morphism is homo-

topic to f .

Proof. A morphism f is a collection of homomorphisms fn : Pn ! Qn, which
can be inductilvely The first map f0 exists by projectivity of P0

P0

✏✏

f0
~~

Q0
// M

Suppose fn, fn�1 . . . have been constructed. Let us write d• and d
0
• for the

di↵erentials of P• and Q•. Then we have that fn�1dn = d
0
n
fn. So that

d
0
n
fndn+1 = fn�1dndn+1 = 0. Therefore fndn+1 ✓ ker d0

n
= im d

0
n+1. So

we have a diagram
Pn+1

✏✏

fn+1
zz

Qn+1
// im d

0
n+1

Projectivity of Pn+1 shows the existence of fn+1 making this commute.
Given a second morphism g : P• ! Q•, we have to construct a homotopy h

between, that is sequence of maps hn : Pn ! Qn+1 satisfying

fn � gn = dn+1hn + hn�1dn

This is again constructed by induction, using projectivity of each Pn. See p342
of Rotman for details.

Remark 3.14. The same proof actually something stronger, namely that if

P• ! M is a complex, with each Pn projective, then f : P• ! Q• exists and is

unique up to homotopy.

Corollary 3.15. If Q• ! M is another projective resolution, there exists a

homotopy equivalence f : P• ! Q•. (Recall that this means that there is g :
Q• ! P• such that f � g and g � f are homotopic to the identities.)

24



3.16 Higher Ext groups

Given a pair of modules M and N fix a projective resolution P• ! M . Let
@ : Pn ! Pn�1 denote the maps. Since P• is exact, it forms a complex i.e.
@
2 = 0. Then

C
n = Hom(Pn, N)

carries maps
d : Cn ! C

n+1

dual to @. We necessarily have d
2 = 0, so C

• forms a cochain complex.

Theorem/Def 3.17. The isomorphism classes of the cohomology groups

Ext
n

R
(M,N) = H

n(HomR(P•, N))

depend only on M and not on the choice of resolution P•.

Proof. If Q• is another projective resolution, we have morphisms f : P• ! Q•
and g : Q• ! P• such that f �g and g �f are homotopic to the identities. These
induces morphisms between Hom(P •

, N) and Hom(Q•, N) whose compositions
are again homotopic to the identities. This implies that they have isomorphic
cohomology by proposition 2.22.

Corollary 3.18. There are isomorphisms

Ext
0
R
(M,N) ⇠= HomR(M,N)

and

Ext
1
R
(M,N) ⇠= Ext(M,N)

where the last group is the one constructed in a previous section.

Proof. Given a projective resolution P• ! M , we can form an exact sequence

0 ! K ! P0 ! M ! 0

where K = imP1 ! P0. Then

0 ! Hom(M,N) ! Hom(P0, N) ! Hom(K,N)

and
0 ! Hom(K,N) ! Hom(P1, N)

are exact. This implies that

Hom(M,N) = H
0(Hom(P•, N))

The proof of the second isomorphism is similar.
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The previous theorem is not that useful as stated. In fact, we will show that
Ext

n(�,�) is a functor in both variables, and that it fits into natural exact
sequences. It are these properties that make it a powerful tool.

Theorem 3.19. If g : N ! N
0
is a morphism there is an induced morphism

g⇤ : Ext
n

R
(M,N) ! Ext

n

R
(M 0

, N). This makes Ext
n

R
(M,�) a covariant functor

from ModR ! Ab. If

0 ! N ! N
0 ! N

00 ! 0

is exact, then there is a long exact sequence

. . . Ext
n

R
(M,N) ! Ext

n

R
(M,N

0) ! Ext
n

R
(M,N

00) ! Ext
n+1
R

(M,N) . . .

Proof. Fix a projective resolution P• ! M . Then we get a morphism of com-
plexes

Hom(P•, N) ! Hom(P•, N
0)

The induced map on cohomology yields

Ext
n

R
(M,N) ! Ext

n

R
(M 0

, N)

Suppose that
0 ! N ! N

0 ! N
00 ! 0

is exact. Since Pi is projective, Hom(Pi,�) is an exact functor. Therefore we
get a short exact sequence of complexes

0 ! Hom(P•, N) ! Hom(P•, N
0) ! Hom(P•, N

00) ! 0

This yields a long exact sequence

. . . Ext
n

R
(M,N) ! Ext

n

R
(M,N

0) ! Ext
n

R
(M,N

00) ! Ext
n+1
R

(M,N) . . .

Theorem 3.20. If h : M ! M
0
is a morphism, there is an induced morphism

h
⇤ : Ext

n

R
(M 0

, N) ! Ext
n

R
(M,N). This makes Ext

n

R
(�, N) into a contravari-

ant functor from ModR ! Ab. If

0 ! M ! M
0 ! M

00 ! 0

is exact, then there is a long exact sequence

. . . Ext
n

R
(M 00

, N) ! Ext
n

R
(M 0

, N) ! Ext
n

R
(M,N) ! Ext

n+1
R

(M 00
, N) . . .

Proof. If P 0
• ! M

0 is a projective resolution, the above remark 3.14 allows us
to construct a morphism h̃ : P• ! P

0
• unique up to homotopy. This indices a

morphism
Hom(P 0

•, N) ! Hom(P•, N)

which induces h
⇤. If ` : M 0 ! M

00 is another morphism. Choose a projective
resolution P

00
• ! M

00 and construct the corresponding morphism ˜̀ : P 0
• ! P

00
• .
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The uniqueness shows that g` � h and ˜̀� h̃ are homotopy equivalent. This implies
(` � h)⇤ = h

⇤ � `⇤. Therefore we have a functor.
For the last statement, we claim that we can construct projective resolutions

fitting into a diagram

✏✏

✏✏ ✏✏

||

0 // P0
//

i

✏✏

P
0
0

//

f

✏✏

P
00
0

//

✏✏

g
}}

0

0 // M // M
0

// M
00

// 0

with exact rows. To prove this, choose resolutions P• and P
00
• , and set P

0
• =

P• � P
00
• as a graded module. Since P

00
0 is projective, we can construct g above.

Set f : P0 � P
00
0 ! M

0 to i+ g. The di↵erentials of P 0
• are built similarly.

From the claim, we have an exact sequence of complexes

0 ! P• ! P
0
• ! P

00
• ! 0

which, by construction, is split as a sequence of graded modules. It follows that

0 ! Hom(P 00
• , N) ! Hom(P 0

•, N) ! Hom(P•, N) ! 0

is an exact sequence of complexes. Applying theorem 2.13 to this, gives a long
exact sequence of Ext groups.

Example 3.21. If R = Z, using the projective resolution,

0 ! Z n! Z ! Z/nZ ! 0

we find that

Ext
1(Z/nZ, A) = A/nA

and

Ext
i(Z/nZ, A) = 0

for i > 1.

3.22 Characterization of projectives and injec-

tives

Theorem 3.23. Let P be an R-module. The following are equivalent.

(a) P is projective.

(b) Ext
n

R
(P,M) = 0 for all n > 0 and for all modules M .
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(c) Ext
1
R
(P,M) = 0 for all modules M .

Proof. If P is projective, then P = P is a projective resolution. Therefore (b)
follows. Clearly (b) implies (c). If (c) holds, then for any exact sequence

0 ! K ! M ! N ! 0

we have
HomR(P,M) ! HomR(P,N) ! Ext

1
R
(P,K) = 0

This implies that P is projective.

We prove an analogous characterization for injectives. However, due to the
asymmetry of the definition, the proof will be completely di↵erent.

Theorem 3.24. Let E be an R-module. The following are equivalent.

(a) E is injective.

(b) Ext
1
R
(M,E) = 0 for all modules M .

(c) Ext
n

R
(M,E) = 0 for all n > 0 and for all modules M .

Proof. Suppose that E is injective. Injectivity will imply that given an exact
sequence

0 ! E
i! N ! M ! 0

we can find a homomorphism r : N ! E such that r � i = id. This means
that the sequence splits. By an earlier characterization, Ext

1
R
(M,E) is the

equivalence class of extensions as above. Therefore it must be zero. Conversely,
if (b) holds then any extension must split. So E can be seen to be injective.

Clearly (c) implies (b). We just have to prove the converse. We use induction
on n and a trick called “dimension shifting”. Following Grothendieck, algebraic
geometers also refer this type of argument more broadly as “devissage”, which
translates roughly as “untwisting”. Suppose that (c) holds for a fixed n > 0 for
all M . Given M we can find an exact sequence

0 ! K ! P ! M ! 0

with P projective. Then we have an exact sequence

Ext
n

R
(K,E) ! Ext

n+1
R

(M,E) ! Ext
n+1
R

(P,E)

The group on the left is zero by induction, while the group on the right is zero
by projectivity of P .

For the remainder of this section, let us assume that R is commutative.
Then HomR(M,N) is naturally an R-module via (rf)(m) = rf(m) = f(rm).
Therefore

Ext
n

R
(M,N) = H

n(HomR(P•, N))
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is also an R-module. Moreover, the previous arguments can be modified to show
that this structure is independent of the resolution.

Recall that if S ⇢ R is a multiplicatively closed set, we can form a new ring
S
�1

R by inverting elements of S. This operation extends to an exact functor
S
�1 : ModR ! ModS�1R. See Atiyah-Macdonald for details.

Lemma 3.25. If P is projective, then S
�1

P is projective.

Proof. P is projective if and only if it is a summand of a free module. The last
condition is stable under localization.

Suppose now in addition that R is noetherian. If M is finitely generated
over R, then we can find a surjection

R
n0 ! M ! 0

for some n0. Since the kernel is finitely generated (by noetherianness), we can
prolong this to an exact sequence

R
n1 ! R

n0 ! M ! 0

and so on to obtain

Lemma 3.26. If M is finitely generated, then it has a free resolution by finitely

generated free modules.

Lemma 3.27. If M is finitely generated, then for any multiplicative set

S
�1

HomR(M,N) ⇠= HomS�1R(S
�1

M,S
�1

N)

Proof. If M = R
n, then this amounts to the isomorphism

S
�1(Mn) = (S�1

M)n

We can form a commutative diagram

0 // S
�1

Hom(M,N) //

f

✏✏

S
�1

Hom(Rn0 , N) //

⇠=
✏✏

S
�1

Hom(Rn1 , N)

⇠=
✏✏

0 // Hom(S�1
M,S

�1
N) // Hom(S�1

R
n0 , S

�1
N) // Hom(S�1

R
n1 , S

�1
N)

The last two maps are isomorphisms by what we said above. Therefore f is an
isomorphism by a diagram chase.

Combining the last two lemmas, we find that

Theorem 3.28. If M is finitely generated, then

S
�1

Ext
n

R
(M,N) ⇠= Ext

n

S�1R
(M,N)
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Corollary 3.29. A finitely generated R-module P is projective if and only if it

is locally free.

Proof. Suppose that P is finitely generated and locally free. We have to show
that E = Ext

1
R
(P,N) = 0 for any N . It su�ces to prove that localizations of

Ep = 0 at primes p 2 SpecR. By the theorem

Ep = Ext
1
Rp

(Pp, Np) = 0

for any p 2 SpecR.
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