
Chapter 6

Schemes (continued)

6.1 More sheaf theory

A morphism of presheaves of (say) groups ⌘ : F ! G on a space X, is a col-
lection of homomorphisms ⌘U : F(U) ! G(U) which commute with restriction:
⌘V (f |V ) = ⌘U (f)|V . If we think of presheaves as functors, as explained earlier,
then a morphism is simply a natural transformation. A morphism of sheaves is
defined the same way. So we can form a category of presheaves over X, and a
subcategory of sheaves on X.

Given a presheaf F and a point p 2 X, the stalk

Fp = lim�!
p2U

F(U)

More concretely, an element of Fp is an equivalence class of a section defined in
neighbourhood, where f ⇠ f 0 is they agree on a smaller neighbourhood. The
equivalence class of f is called the germ of f . There are couple of examples,
where the germ can be interpreted in terms of more familiar objects.

Lemma 6.1.1. Let OC be the sheaf of holomorphic functions on C, the stalk
OC,p is isomorphic to the ring of convergent power series at p

Lemma 6.1.2. OSpecR,p
⇠= Rp.

Proof. Let S = R� p. Then

Rp = S�1R = lim�!
f /2p

R[f�1] = lim�!
p2D(f)

O(D(f))

which is the stalk OSpecR,p.

We can see that the stalk gives a functor from the category of presheaves to
sets, groups etc. Given a presheaf F , define a presheaf

F+(U) = {f : U !
Y

p2U

| 8q 2 U, 9q 2 V ✓ U, 9� 2 F(V ), 8p 2 U,�p = f(p)}

40



where restrictions are just restrictions of functions. F+ is called the sheafifica-
tion of F . Here is what it does.

Theorem 6.1.3.

1. F+ is sheaf,

2. there is a morphism F ! F+ such that any morphism of F to a sheaf
factors uniquely through F

3. The last morphism induces an isomorphism on stalks.

Given a continuous map f : X ! Y and a presheaf F on X define the direct
image

f⇤F(U) = F(f�1U)

with obvious restrictions.

Lemma 6.1.4. If F is a sheaf, then so is f⇤F .

6.2 Definition of a scheme

Definition 6.2.1. A locally ringed space is a ringed space (X,OX) all of whose
stalks are local rings.

As a corolloray to lemma 6.1.2, we obtain

Corollary 6.2.2. An a�ne scheme is a locally ringed space.

We now define a morphism of locally ringed spaces. Given locally ringed
space (X,OX) and (Y,OY ) a morphism consists of

1. A continuous mapf F : X ! Y .

2. A morphism of sheaves of rings

F# : OY ! OX

such that for every p 2 X, the induced homomorphism

OY,F (p) ! OX,p

takes the maximal ideal to the maximal ideal (such a homomorphism is
called local).

There is a lot to understand here. The role of the map F should be clear in
enough. But also need a way to pullback “functions” from Y to X, and this is
where F# comes in. This gives us a collection of homomorphisms

F# : OY (U) ! OX(f�1U)

for every open U ✓ Y . If this really came from pulling back functions, we would
see that if a function vanishes at F (p), then its pullback vanishes at p, i.e. that
F#(mF (p)) ✓ mp. We impose this as an axiom. Although a morphism is really
a pair (F, F#), we usually just refer to it as F .
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Example 6.2.3. A regular map of quasiprojective varieties F : X ! Y gives a
morphism of locally ringed spaces where we take F# = F ⇤.

Theorem 6.2.4. Let f : R ! S be homomorphism. Then there is a morphism
of locally ringed spaces

F : SpecS ! SpecR

where F (p) = f�1p, and

F# : OSpecS(D(f(r)) ! OSpecR(D(r))

can be identified with the natural maps

R[1/r] ! S[1/f(r)]

Conversely, any map of locally ringed spaces from SpecS ! SpecR arises this
way from a unique f .

We refer to Hartshorne for the details. The collection of locally ringed spaces
and morphisms form a category.

Corollary 6.2.5 (Duality). The category of a�ne schemes is antiequivalent to
the category of commutative rings.

We can define an isomorphism to locally ringed spaces to be a morphism
such that F is a homeomorphism and F# is an isomorphism of sheaves.

Definition 6.2.6. A scheme is a locally ringed space (X,OX) which is locally
isomorphic to an a�ne scheme. More precisely, there exists an open covering
{Ui}, such that (Ui,OX |Ui) is isomorphic to an a�ne scheme. Here OX |Ui is
the sheaf defined by OX |Ui(U) = OX(U) for U ⇢ Ui.

We can construct examples as follows.

Lemma 6.2.7. Let X = SpecR, and U ⇢ X open. Then (U,OX |U ) is a
scheme.

Proof. We can cover U by sets of the form

D(f) = {p 2 SpecR | f /2 p} = SpecR[1/f ]

We can see that D(f) ⇠= SpecR[1/f ] as schemes. Therefore U is locally isomor-
phic to an a�ne scheme.

6.3 Projective space over a ring

Given commutative ring R, we give two constructions of P1
R. The first is by

gluing. Given two topological spaces X1, X2, with open sets Ui ✓ Xi, and a
homemorphism � : U1

⇠= U2, we can form a new space X = X1[�X2 as follows.
First take the disjoint union X1

`

X2. Then form the equivalence relation ⇠
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generated by x ⇠ �(x). Let X = X1
`

X2/ ⇠ with quotient topology. Open
sets V ⇢ X are obtained by gluing V1 [� V2, where Vi ⇢ Xi are open/ Now
suppose that the Xi are ringed spaces. Define

OX(V ) = {(r1, r2) 2 OX1(V1)⇥OX2(V2) | r1|V1\U1 = r2|V2\U2}
Lemma 6.3.1. If Xi are schemes, then so is X.

Set X1 = SpecR[x] and X2 = SpecR[y]. These are two copies of the a�ne
line. Define U1 = SpecR[x, x�1] and U2 = SpecR[y, y�1]. Define � : U1

⇠= U2

by sending x 7! y�1. Then glue to get P1
R = X1 [� X2.

In principle, we can define Pn
R by gluing, but it’s somewhat messier because

we need to glue several schemes. Instead, we use di↵erent construction, which
is quite useful by itself. Start with a graded commutative ring

S = S0 � S1 � . . .

and set
S+ = S1 � S2 � . . .

Note that S0 is actually a subring, and S+ is an ideal. Let’s assume S0 = R. The
key example is where S = R[x0, . . . , xn] Let ProjS be the set of homogeneous
prime ideals which don’t contain S+. Given a homogeneous element f , i.e. an
element of some Si, let

D+(f) = {p 2 ProjS | f /2 p}
This gives a basis for a topology on ProjS. For f homogeneous, let S(f) ⇢
S[1/f ] generated by ratios g/f j , where g and f j are homogenous of the same
degree. For example,

R[x0, . . . , xn](xi) = R[x0/xi, x1/xi, . . .]

Theorem 6.3.2. There exists a sheaf of commutative rings on X = ProjS,
such that

OX(D+(f)) = S(f)

and restrictions are correspond to natural maps.

Again referring to Hartshorne for details. One consequence of this, (D+(f),OX |D+(f))
is isomorphic to SpecS(f). Therefore

Corollary 6.3.3. ProjS is a scheme.

We define
Pn
R = ProjR[x0, . . . , xn]

Let us compare this to old definition, when R = k is an algebraically closed
field. The maximal elements of Proj k[x0, . . . xn], with respect to inclusion, are
the ideals of lines in kn+1. These are exactly the closed points. Thus we see
that the old version of Pn

k is the set of closed points of the new version.
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6.4 Exercises

Exercise 6.4.1.

1. Prove lemma 6.1.4.

2. Let i : Y ⇢ X be the inclusion of a closed subset. Given a sheaf F on Y ,
calculate the stalks of i⇤F for points in Y and outside Y . You can assume
that F(;) = 0.

3. Given a scheme (X,OX), and an open set U ⇢ X, check that (U,OX |U )
is a scheme. Further that the inclusion i : U ! X can be extended to a
morphism of schemes in a natural way.

4. A closed immersion of schemes f : (Y,OY ) ! (X,OX) is a morphism f
such that,

(a) The underlying map of spaces is injective, and identifies Y with a
closed subset of X.

(b) The homomorphism OX,f(p) ! OY,p is surjective.

Show that for any commutative ring R and ideal I, the natural map
SpecR/I ! SpecR is a closed immersion.
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