Chapter 6

Schemes (continued)

6.1 More sheaf theory

A morphism of presheaves of (say) groups n : F — G on a space X, is a col-
lection of homomorphisms ny : F(U) — G(U) which commute with restriction:
nv(flv) =nu(f)|v. If we think of presheaves as functors, as explained earlier,
then a morphism is simply a natural transformation. A morphism of sheaves is
defined the same way. So we can form a category of presheaves over X, and a
subcategory of sheaves on X.

Given a presheaf F and a point p € X, the stalk

F,=li
(S

=

F(U)

|

3
G

More concretely, an element of F, is an equivalence class of a section defined in
neighbourhood, where f ~ f’ is they agree on a smaller neighbourhood. The
equivalence class of f is called the germ of f. There are couple of examples,
where the germ can be interpreted in terms of more familiar objects.

Lemma 6.1.1. Let O¢ be the sheaf of holomorphic functions on C, the stalk
Oc,p is itsomorphic to the ring of convergent power series at p

Lemma 6.1.2. Ogpecrp = Ry
Proof. Let S = R — p. Then

R,=S'R=lmR[f']= lim O(D(f))
fép peD(f)

which is the stalk Ogpec rp- ]

We can see that the stalk gives a functor from the category of presheaves to
sets, groups etc. Given a presheaf F, define a presheaf

FrU)={f:U—~ ] IVaeU3¢eV CU3¢ e F(V),YpeUd,=f(p)}
peU
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where restrictions are just restrictions of functions. F7 is called the sheafifica-
tion of F. Here is what it does.

Theorem 6.1.3.
1. F* is sheaf,

2. there is a morphism F — FT such that any morphism of F to a sheaf
factors uniquely through F

8. The last morphism induces an isomorphism on stalks.

Given a continuous map f : X — Y and a presheaf F on X define the direct
image
LFU)=F(f0)

with obvious restrictions.

Lemma 6.1.4. If F is a sheaf, then so is f.JF.

6.2 Definition of a scheme
Definition 6.2.1. A locally ringed space is a ringed space (X, Ox) all of whose
stalks are local rings.
As a corolloray to lemma 6.1.2, we obtain
Corollary 6.2.2. An affine scheme is a locally ringed space.

We now define a morphism of locally ringed spaces. Given locally ringed
space (X,Ox) and (Y, Oy) a morphism consists of

1. A continuous mapf F: X — Y.
2. A morphism of sheaves of rings
F#* .0y - Ox
such that for every p € X, the induced homomorphism
Oyv.rp) = Oxp

takes the maximal ideal to the maximal ideal (such a homomorphism is
called local).

There is a lot to understand here. The role of the map F' should be clear in
enough. But also need a way to pullback “functions” from Y to X, and this is
where F# comes in. This gives us a collection of homomorphisms

F#:0y(U) = Ox(f71U)

for every open U C Y. If this really came from pulling back functions, we would
see that if a function vanishes at F(p), then its pullback vanishes at p, i.e. that
F#(m F(p)) € mp. We impose this as an axiom. Although a morphism is really
a pair (F, F7#), we usually just refer to it as F.
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Example 6.2.3. A regular map of quasiprojective varieties F' : X — 'Y gives a
morphism of locally ringed spaces where we take F# = F*.

Theorem 6.2.4. Let f: R — S be homomorphism. Then there is a morphism
of locally ringed spaces

F : SpecS — Spec R
where F(p) = f~p, and

F# . OSpeCS(D(f(T)) — OSPECR(D(T))

can be identified with the natural maps
R[1/r] = S[1/f(r)]

Conversely, any map of locally ringed spaces from Spec S — Spec R arises this
way from a unique f.

We refer to Hartshorne for the details. The collection of locally ringed spaces
and morphisms form a category.

Corollary 6.2.5 (Duality). The category of affine schemes is antiequivalent to
the category of commutative rings.

We can define an isomorphism to locally ringed spaces to be a morphism
such that F is a homeomorphism and F# is an isomorphism of sheaves.

Definition 6.2.6. A scheme is a locally ringed space (X, Ox) which is locally
isomorphic to an affine scheme. More precisely, there exists an open covering
{U;}, such that (U;, Ox|y,) is isomorphic to an affine scheme. Here Ox|y, is
the sheaf defined by Ox |y, (U) = Ox(U) for U C U;.

We can construct examples as follows.

Lemma 6.2.7. Let X = SpecR, and U C X open. Then (U,Ox|y) is a
scheme.

Proof. We can cover U by sets of the form

D(f) ={p €SpecR | f ¢ p} = Spec R[1/f]

We can see that D(f) = Spec R[1/f] as schemes. Therefore U is locally isomor-
phic to an affine scheme. O

6.3 Projective space over a ring
Given commutative ring R, we give two constructions of PL. The first is by
gluing. Given two topological spaces X1, Xo, with open sets U; C X;, and a

homemorphism ¢ : Uy = Us, we can form a new space X = X; Uy X» as follows.
First take the disjoint union X; [ X3. Then form the equivalence relation ~
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generated by z ~ ¢(x). Let X = X; ][ X3/ ~ with quotient topology. Open
sets V' C X are obtained by gluing V4 Uy Vo, where V; C X; are open/ Now
suppose that the X; are ringed spaces. Define

Ox(V) ={(r1,r2) € Ox, (V1) x Ox,(V2) | r1lvinwy, = r2lvenus }
Lemma 6.3.1. If X; are schemes, then so is X.

Set X1 = Spec R[z] and X2 = Spec R[y]. These are two copies of the affine
line. Define U; = Spec R[z,r~!] and Us = Spec R[y,y~!]. Define ¢ : U; = U,
by sending x — y~!. Then glue to get IP’}{ = X1 Uy Xo.

In principle, we can define P by gluing, but it’s somewhat messier because
we need to glue several schemes. Instead, we use different construction, which
is quite useful by itself. Start with a graded commutative ring

S=SodS1D...
and set
S, =5195¢...

Note that Sy is actually a subring, and S is an ideal. Let’s assume Sy = R. The
key example is where S = Rz, ..., z,] Let Proj S be the set of homogeneous
prime ideals which don’t contain Sy. Given a homogeneous element f, i.e. an
element of some S;, let

D (f)={peProjS| [ ¢np}

This gives a basis for a topology on ProjS. For f homogeneous, let S sy C
S[1/f] generated by ratios g/f?, where g and f7 are homogenous of the same
degree. For example,

Rlzo, ..., 2n](2,) = Rlzo/zs, 01 /24, . . ]

Theorem 6.3.2. There exists a sheaf of commutative rings on X = Proj S,
such that

Ox(D+(f)) = S

and restrictions are correspond to natural maps.

Again referring to Hartshorne for details. One consequence of this, (D (f), Ox|p. (f))
is isomorphic to Spec S(fy. Therefore

Corollary 6.3.3. Proj S is a scheme.

We define
P% = Proj R[zo, . .., Ty]

Let us compare this to old definition, when R = k is an algebraically closed
field. The maximal elements of Proj k[zg, . .. z,], with respect to inclusion, are
the ideals of lines in k"*!. These are exactly the closed points. Thus we see
that the old version of P} is the set of closed points of the new version.
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6.4 Exercises

Exercise 6.4.1.
1. Prove lemma 6.1.4.

2. Leti:Y C X be the inclusion of a closed subset. Given a sheaf F on'Y,
calculate the stalks of i.F for points in'Y and outside Y. You can assume
that F(0) = 0.

3. Given a scheme (X,Ox), and an open set U C X, check that (U,Ox|v)
1s a scheme. Further that the inclusion i : U — X can be extended to a
morphism of schemes in a natural way.

4. A closed immersion of schemes [ : (Y,0y) — (X,0x) is a morphism f
such that,

(a) The underlying map of spaces is injective, and identifies Y with a
closed subset of X.

(b) The homomorphism Ox ¢,y — Oy,p is surjective.

Show that for any commutative ring R and ideal I, the natural map
Spec R/I — Spec R is a closed immersion.
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