
Chapter 1

Basic curve theory

1.1 Hyperelliptic curves

As all of us learn in calculus, integrals involving square roots of quadratic poly-
nomials can be evaluated by elementary methods. For higher degree polynomi-
als, this is no longer true, and this was a subject of intense study in the 19th
century. An integral of the form

Z
p(x)p
f(x)

dx (1.1)

is called elliptic if f(x) is a polynomial of degree 3 or 4, and hyperelliptic if f
has higher degree, say d.

It was Riemann who introduced the geometric point of view, that we should
really be looking at the algebraic curve Xo defined by

y2 = f(x)

in C2. When f(x) =
Q

d

0

(x � a
i

) has distinct roots (which we assume from
now on), Xo is nonsingular, so we can regard it as a Riemann surface or one
dimensional complex manifold. Since surfaces will later come to mean two di-
mensional complex manifolds, we will generally refer to this as a (complex non-
singular) curve. It is convenient to add points at infinity to make it a compact
complex curve X called a (hyper)elliptic curve. One way to do this is to form
the projective closure

X̄o = {[x, y, z] 2 P2 | F (x, y, z) = 0}

where
F (x, y, z) = y2zd�2 �

Y
(x� a

i

z) = 0

is the homogenization of y2 � f(x). Unfortunately, X̄o will usually be singular.
To see this, let’s switch to the a�ne chart y = 1. Then X̄o is given by

zd�2 �
Y

(x� a
i

z) = 0
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The partials vanish at x = 0, y = 0, as soon as d > 3.
We have to perform another operation on X̄o which is called resolving sin-

gularities to obtain a nonsingular projective curve X containing Xo. We give
two constructions, both with their advantages and disadvantages. The first is a
general procedure called normalization. If A is an integral domain with fraction
field K, its normalization or integral closure is the ring

Ã = {a 2 K | 9 monic f(t) 2 A[t], f(a) = 0} ◆ A

Suppose that X is an algebraic variety (or integral scheme) then X is obtained
by gluing a�ne varieties U

i

(or schemes) with coordinate rings A
i

. Let Ũ
i

=
SpecÃ

i

. Then these can be glued to get a new variety/scheme X̃ called the
normalization. See Mumford’s Red Book for details. The normalization comes
with a morphism X̃ ! X.

Here is an example. Let A = k[x, y]/(y2 � x3) be the coordinate ring of a
cusp over a field k. Then y/x 2 Ã because it satisfies t2 � x = 0. With more
work, we can see that Ã = k[y/x]. In general, by standard commutative algebra

Theorem 1.1.1. If A is a one dimensional integral domain, then Ã is Dedekind
domain; in particular the localizations of Ã at maximal ideals are discrete val-
uation rings and therefore regular.

Corollary 1.1.2. If X is a curve i.e. one dimensional variety, then X̃ is a
nonsingular curve with the same function field as X.

Returning to the original problem. Given X̄o as above, X can be simply be
taken to be it’s normalization. Unfortunately, this process is not very geometric.
So we briefly describe another procedure. The blow up of the a�ne plane A2

k

at the origin is the quasiprojective variety

B = Bl
0

A2 = {(v, `) 2 A2 ⇥ P1 | v 2 `}

= {(x, y, [X,Y ]) | A2 ⇥ P1 | xY = Xy}
This comes with a projection ⇡ : B ! A2 which is an isomorphism over A2�{0}.
The blow of the projective plane can be defined as the closure of B in P2 ⇥ P1.
Using the Segre embedding, we can see that this is a projective variety.

Given a curve C ⇢ A2 (or P2), the closure C
1

of ⇡�1C � {0} is the blow
up of C. This is also called the strict transform of C. Let’s calculate this for
the cusp y2 � x3 = 0 in A2. Then B is covered by open sets where X = 1 and
Y = 1. The intersection of C

1

with X = 1 is the irreducible component of

{y2 = x3, xY = y} , {x(Y 2 � x) = 0, y = xY }

dominating C. This is the locus Y 2 � x = 0, which is nonsingular. In general,
the process many steps. For the example, y2 = x5, the first step produces
C

1

: Y 2 � x3 = 0, which is “less singular” than before. Blowing it up a second
time at x = Y = 0, yields a nonsingular curve C

2

.

3



Theorem 1.1.3. Given a curve X, after finite number of blow ups, we obtain
a nonsingular curve X̃ ! X. This coincides with the normalization.

Corollary 1.1.4. X̃ can be embedded into a projective space (generally bigger
than P2).

1.2 Topological genus

Let’s work over C. Then a nonsingular projective curve X ⇢ Pn

C can be viewed
as complex submanifold and therefore a Riemann surface.1 In particular, X
can be viewed a compact C1 2 (real) dimensional manifold. The fact that X is
complex implies that it is orientable. Before describing the classification, recall
that the give two connected n-manifolds X

1

, X
2

, their connected sum X
1

#X
2

is obtained by removing an n-ball from both and joining them by the cylinder
Sn�1 ⇥ [0, 1].

Theorem 1.2.1. Any compact connected orientable 2-manifold is homeomor-
phic to either the two sphere S2 or connected sum of g 2-tori for some integer
g > 0.

The integer g is called the genus. However, we will refer to as the topological
genus temporarily until we have established all the properties. We set g = 0
in the case of S2. Let’s relate this to more familiar invariants. Recall that
the Euler characteristic e(X) of a (nice) topological space is the alternative
sum of Betti numbers. When the space admits a finite triangulation, then it is
number of vertices minus the number of edges plus ... We can triangulate S2 as
a tetrahedron, therefore e(S2) = 4� 6 + 4 = 2. In general, we can compute the
Euler characteristic using the following inclusion-exclusion formula:

Proposition 1.2.2. If X = U [ V is a union of open sets, e(X) = e(U) +
e(V )� e(U \ V ).

Proof. In general, given an exact sequence of vector spaces

. . . V i ! V i+1 ! . . .
X

(�1)i dimV i = 0

Now apply this to the Mayer-Vietoris sequence

. . . Hi(X) ! Hi(U)�Hi(V ) ! Hi(U \ V ) ! . . .

where Hi(X) = Hi(X,C).

Proposition 1.2.3. Given a compact orientable surface X of genus g

(a) e(X) = 2� 2g

1
Recall that a Riemann surface is the same thing as a one dimensional complex manifold.
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(b) If D ⇢ X is a disk, e(X �D) = 1� 2g

Proof. By the previous proposition have e(X) = e(D0) + e(X � D) � e(D0 \
(X � D)) where D0 � D is a slightly larger disk. Since, Betti numbers, and
therefore Euler characteristic, is invariant under homotopy, e(D0) = e(pt) = 0
and e(D0 \ (X � D)) = e(S1) = 0. Therefore e(X � D) = e(X) � 1 = 1 � 2g
assuming (a).

We prove (a) by induction. The g = 0 case is clear. We can write X = Y#T ,
where Y has genus g � 1. Therefore

e(X) = e(Y �D) + e(T �D)� e(S1 ⇥ [0, 1]) = 1� 2(g � 1)� 1 = 2� 2g

We can use this to compute the genus for our (hyper)elliptic curve X ob-
tained from y2 = f(x) as before. We have holomorphic map p : X ! P1

extending the projection of the a�ne curve to the x-axis. Note that this map
is 2 to 1 for all but finitely many points called the branch points. These consist
of the zeros of f and possibly 1. Let r be the number of these points. Ei-
ther r = deg f or deg f + 1. Let us triangulate P1, making sure to include the
branch points among the vertices and no edge connects two branch points. Let
V = r+V 0 be the number of vertices, E the number of edges and F the number
of faces. Since P1 is S2 as topological space,

V � E + F = e(P1) = 2

Take the preimage of this triangulation under p. This gives a triangulation of
X, with r + 2V 0 vertices, 2E edges and 2F faces. Therefore g is the genus of
X, we have

2� 2g = r + 2V 0 � 2E + 2F = 2(V � E + F )�R = 4� r

Thus

Proposition 1.2.4.

g =
1

2
r � 1

Note that this forces R to be even, and this allows us to conclude that

r =

(
deg f if deg f is even

deg f + 1 otherwise

This result generalizes. Let f : X ! Y be a surjective holomorphic map
between compact curves. A point p 2 X is called a ramification point if the
deriviative of p vanishes at it. An image of a ramification point will be called a
branch point. (Some people reverse the terminology.) There are a finite number
of branch points B After removing these we get a finite sheeted covering space
X � f�1B ! Y � B. The number of sheets is called the degree of p. Let us
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denote this by d. So for each nonbranch point |f�1(q)| = d. Now suppose that
q is a branch point. Choose a small disk D centered at q. The premiage f�1(D)
is a union of disks D

i

centered at p
i

2 f�1(q). We can choose coordinates so
D

i

! D is given by y = xei . The exponents e
i

= e(p
i

) are called ramification
indices. After perturbing q slightly, p

i

splits into a union of e
i

points. Therefore
X

e
i

= d

By the same sort of argument as before, we get

Theorem 1.2.5 (Riemann-Hurwitz). If g(X) and g(Y ) denote the genera of
X and Y ,

2(g(X)� 2) = 2d(g(X)� 1) +
X

p2X

e(p)� 1

1.3 Degree of the canonical divisor

While the previous description of the genus is pretty natural. It is topological
rather than algebro-geometric. We give an alternative description which actually
works over any field.

Let X be a compact curve. A divisor on X is finite formal sum D =
P

n
i

p
i

,
n
i

2 Z, p
i

2 X. The degree degD =
P

n
i

. If f is a nonzero meromorphic
function, the associated principal divisor

div(f) =
X

ord
p

(f)p

where ord
p

(f) is the order of the zero f at p or minus the order of the pole.

Proposition 1.3.1. deg div(f) = 0

Proof. Let p
j

be the set of zeros and poles of f , and let D
j

be a small disk
centered at p

j

. We can express ord
pj (f) as the residue of df/f at p

j

. Thus by
Stokes

deg div(f) =
1

2⇡i

XZ

@Dj

df

f
= � 1

2⇡i

ZZ

X�[Dj

d

✓
df

f

◆
= 0

Given a nonzero meromorphic 1-form ↵, set

div(↵) =
X

ord
p

(↵)p

Such a divisor is called a canonical divisior. Inspite of the similarity of nota-
tion, it is usually not principal. However any two canonical divisors di↵er by a
principal divisor. Consequently the degree of a canonical divisor depends only
on X. We write it as degK

X

. For this to make sense, we need to show that a
nonzero constant meromorphic form actually exists. Let us avoid the issue for
now by restricting our attention to smooth projective curves.2

2
In fact, as we will see later, all compact Riemann surfaces are of this form.
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Lemma 1.3.2. The degree of a canonical divisor on P1 is �2.

Proof. let z be the standard coordinate on C. We can use ⇣ = z�1 as the
coordinate around 1. Since dz = d⇣�1 = �⇣�2d⇣. This proves the lemma.

Theorem 1.3.3 (Riemann-Hurwitz II). Let f : X ! Y be a branched cover of
degree d, then

degK
X

= degK
Y

+
X

p2X

e(p)� 1

Proof. Let ↵ be a nonzero meromorphic form on Y We can assume, after
multiplying ↵ by a suitable meromorphic function, that set of zeros or poles
are disjoint from the branch points. If q is a zero or pole of ↵ or order
n, then f⇤↵ has zero or pole at each p 2 f�1q of of order n. A a branch
point q, locally ↵ = u(y)dy, where u is holomorphic and nonzero at q. Then
f⇤↵ = e

i

u(xei)xei�1dy Therefore deg(div(f⇤↵) is given by the right side of the
formula, we are trying to prove.

Corollary 1.3.4. For any nonsingular projective curve, degK
X

= 2g � 2.

Observe that this says that degK
X

= �e(X). A more conceptual explana-
tion can be given using Chern classes discussed later. The Chern number of the
tangent bundle is e(X), whereas degK

X

is the Chern number of the cotangent
bundle.

1.4 Line bundles

Given X be as above. The divisors from a group Div(X), and the principal
divisors form a subgroup Princ(X). The divisor class group

Cl(X) = Div(X)/Princ(X)

We have a surjective homorphism

deg : Cl(X) ! Z

induced by the degree. To understand the structure of the kernel Cl0(X), we
bring in modern tools. Recall that a holomorphic line bundle is a complex
manifold L with a holomorphic map ⇡ : L ! X which “ locally looks like” the
projection C ⇥ X ! X. More precisely, there exists an open cover {U

i

} and
holomorphic isomorphisms  

i

: ⇡�1U
i

! U
i

⇥C, which are linear on the fibres.
Such a choice called a local trivialization. Given a line bundle ⇡ : L ! X, the
sheaf of sections

L(U) = {f : U ! ⇡�1 | f holomorphic and ⇡ � f = id}

is a locally free O
X

-module of rank 1. Conversely, any such sheaf arises this
way from a line bundle which is unique up to isomorphism. We will therefore
identify the two notions.
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To be a bit more explicit, fix L with a local trivialization. Set U
ij

= U
i

\U
j

etc., and let

�
ij

: U
ij

⇥ C
 

�1
j�! ⇡�1U

ij

 i�! U
ij

⇥ C

It is easy to see that this collection of maps satisfies the 1-cocycle conditions:

�
ik

= �
ij

�
jk

, on U
ijk

�
ij

= ��1

ji

�
ii

= id

We can decompose
�

ij

(x) = (x,�
ij

(x))

where �
ij

: U
ij

! C⇤ is a collection of holomorphic functions satisfying the 1-
cocycle conditions. This determines a Čech cohomology class in Ȟ1({U

i

},O⇤
X

).
Conversely, such a class determines a line bundle. We can summarize everything
as follows.

Theorem 1.4.1. There is an bijection between

1. the set of isomorphism classes of line bundles on X

2. the set of isomorphism classes of rank one locally free O
X

-modules

3. H1(X,O⇤
X

)

The last set is of course a group, called the Picard group. It is denoted
by Pic(X). The group operation for line bundles, or sheaves is just tensor
product. The inverse of the dual line bundle L�1 = Hom(L,O

X

). We have an
exact sequence of sheaves

0 ! Z ! O
X

e

2⇡i

�! O⇤
X

! 1

This yields a long exact sequence

H1(X,Z) ! H1(X,O
X

) ! Pic(X)
c1! H2(X,Z)

The last map is called the first Chern class. This is can viewed as an integer
because H2(X,Z) ⇠= Z. The kernel of c

1

is denoted by Pic0(X). We will show
later that H1(X,Z) sits as a lattice in H1(X,O

X

). Therefore Pic0(X) has the
structure of a complex torus.

We can relate this to the divisor class group. Let K = C(X) be the field
meromorphic functions on X. Given D =

P
n
i

p
i

2 Div(X), define the sheaf

O
X

(D)(U) = {f 2 K | ord
pif + n

i

� 0}

This is a locally principal fractional ideal sheaf, and therefore a line bundle. A
straight forward verification shows that
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Lemma 1.4.2.

O
X

(D
1

)⌦O
X

(D
2

) ⇠= O
X

(D
1

+D
2

)

and
O

X

(D) ⇠= O
X

when D is principal.

Therefore map D 7! O
X

(D) induces a homomorphism Cl(X) ! Pic(X).

Theorem 1.4.3. The above map gives an isomorphism Cl(X) ⇠= Pic(X).

Proof of injectivity. Let D =
P

n
i

p
i

. Suppose that O
X

(D) ⇠= O
X

. Then the
section 1 on the right corresponds to a global section f 2 H0(X,O

X

(D)) which
generates all the stalks of O(D)

p

. We can identify O(D)
pi with x�niO

pi , where
x is a local parameter. For f to generate x�niO

pi , we must have ord
pif =

�n
i

. Therefore D = div(f�1). Thus the homomorphism Cl(X) ! Pic(X) is
injective. We will prove surjectivity in the next section.

We have an isomorphism H2(X,Z) ⇠= Z, therefore c
1

(L) can be viewed as a
number. Let us explain how to compute it in terms of a 1-cocycle �

ij

for L on
U = {U

i

}. We have another sequence

0 ! C
X

! O
X

d! ⌦1

X

! 0

We can map the exponential sequence to this

0 // Z //

✏✏

O
X

//

=

✏✏

O⇤
X

//

1
2⇡

p
�1

d log

✏✏

1

0 // C // O
X

// ⌦1

X

// 0

This shows that c
1

can be factored as

H1(X,O⇤
X

) ! H1(X,⌦1

X

)

composed with the connecting map

H1(X,⌦1

X

) ! H2(X,C)

We need to make the last part explicit. Let ↵
ij

2 Z1(U ,⌦1) be the cocycle
1

2⇡

p
�1

d log �
ij

. We can view this as a 1-cocycle in Z1(U , E1

X

), where E1

X

are

C1 1-forms. But we know that H1(X, E1

X

) = 0 because E1

X

is soft. Therefore
we can find C1 1-forms ↵

i

such that ↵
ij

= ↵
i

� ↵
j

. Since d↵
ij

= @̄↵
ij

= 0,
� = d↵

i

is a globally defined 2-form. The de Rham class of � is precisely what
we are after. Under the isomomorphism

H2(X,C) ⇠= C
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given by integration,

c
1

(L) =
Z

X

�

This is really only a first step. A more satisfying answer is given by the next
theorem.

Theorem 1.4.4. After identifying H2(X,Z) = Z, c
1

(O
X

(D)) = degD.

Proof. It’s enough to prove that c
1

(O
X

(�p)) = �1 for every p 2 X. Let
U
0

be a coordinate disk around p with coordinate z, and let U
1

= X � {p}.
O

X

(�p) ⇢ O
X

is the ideal of p. On U
0

, z gives a trivializing section; on U
1

we
can use 1. The change of basis function �

01

= z�1 is the cocycle for O(p). So
our task is to compute

R
X

�, where � is obtained from �
01

= z�1 by the above
process. We split X = E[B, where B = Ū

0

is the closed disk and E = X�U
0

.
Let C = @B oriented counterclockwise around p. By Stokes and the residue
theorem

Z

X

� =

Z

E

� +

Z

B

� =

Z

E

d↵
1

+

Z

B

d↵
0

=

Z

C

↵
0

� ↵
1

=
�1

2⇡i

Z

C

dz

z
= �1

This concludes the proof.

Corollary 1.4.5. Cl0(X) ⇠= Pic0(X).

1.5 Serre duality

Let X be a connected compact complex curve of genus g. Let O
X

denote the
sheaf of holomorphic functions and let ⌦1

X

denote the sheaf of holomorphic
1-forms on X. We have an exact sequence of sheaves

0 ! C
X

! O
X

d! ⌦1

X

! 0

which gives a long exact sequence

0 ! H0(X,C) ! H0(X,O
X

) ! H0(X,⌦1

X

) ! H1(X,C)

Since X is connected H0(X,C) = H0(X,O
X

) = C, where the last equality
follows from the maximum principle. Therefore we have an injection

0 ! H0(X,⌦1

X

) ! H1(X,C)

In particular, dimH0(X,⌦1

X

)  2g. In fact, we do much better. If we identify
H1(X,C) with de Rham cohomology, then we have a pairing

H1(X,C)⇥H1(X,C) ! C
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given by

h↵,�i =
Z

X

↵ ^ � (1.2)

A suitably strong form of Poincaré duality shows that this is a nondegenerate
pairing. It is clearly also skew symmetric i.e.

h↵,�i = �h�,↵i

We quote the following fact from linear algebra

Theorem 1.5.1. If V is finite dimensional vector with a nondegenerate skew
symmetric pairing h, i, dimV is even. If W ⇢ V is subspace such that h↵,�i = 0
for all ↵,� 2 W (W is called isotropic), then dimW  1

2

dimV .

Corollary 1.5.2. dimH0(X,⌦1

X

)  g.

Proof. The formula (1.2) makes it clear that this is isotropic.

Recall last semester, we constructed a Dolbeault resolution

0 ! O
X

! E00

X

¯

@! E01

X

! 1

where E00

X

(resp E(0,1)

X

) is the sheaf of C1 functions (resp locally C1 multiples
of dz̄. ), @̄f is (0, 1)-part of df . Since this gives a soft resolution of O

X

, we can
use this to compute sheaf cohomology

H0(X,O
X

) = ker[E00

X

(X)
¯

@! E01

X

(X)]

H1(X,O
X

) = coker[E00

X

(X)
¯

@! E01

X

(X)]

Hi(X,O
X

) = 0, i � 2

Suppose that ↵ 2 ⌦1(X) and � 2 E(0,1)(X). Define

h↵,�i =
Z

X

↵ ^ �

as before.

Lemma 1.5.3. This gives a well defined pairing

h, i : H0(X,⌦1

X

)⇥H1(X,O
X

) ! C

Proof. It is enough to show that h↵, @̄fi = 0. This follows from Stokes’ theorem
because ↵ ^ @̄f = ±d(f↵).

Theorem 1.5.4 (Serre duality I). The above pairing is perfect, i.e. it induces
an isomorphism

H1(X,O
X

) ⇠= H0(X,⌦1

X

)⇤
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Corollary 1.5.5. dimH0(X,⌦1

X

) = dimH1(X,O
X

) = g

Proof. The theorem gives dimH0(X,⌦1

X

) = dimH1(X,O
X

). Call his number
h. Earlier we saw that h  g. The exact sequence

0 ! H0(X,⌦
X

) ! H1(X,C) ! H1(X,O
X

)

forces 2g  2h.

What we stated above is really a special case of Serre duality:

Theorem 1.5.6 (Serre duality II). If L is a line bundle then there is a natural
pairing inducing an isomorphism

H1(X,L) ⇠= H0(X,⌦1

X

⌦ L�1)⇤

We can use this finish the proof of theorem 1.4.3. It remains to prove that
the map Cl(X) ! Pic(X) is surjective that is:

Proposition 1.5.7. Any line bundle is isomorphic to O
X

(D) for some divisor
D.

We first need a few lemmas which are useful by themselves.

Lemma 1.5.8. If degL < 0, then H0(X,L) = 0.

Proof. A nonzero section would correspond to a nonzero map � : O
X

! L.
Dualizing gives a nonzero map

�⇤ : L�1 ! O
X

Consider K = ker�⇤. Then K ⌦ L ⇢ O
X

is ideal sheaf. It must by either
0 or of the form O

X

(�D) for some e↵ective divisor D (e↵ective means that
the coe�cients are nonnegative). It follows that either K = L�1(�D) := L�1⌦
O(�D) if it isn’t zero. If D = 0, then �⇤ = 0 which is impossible. If D > 0, then
OO

X

would contain the nonzero torsion sheaf L�1/K which is also impossible.
Therefore K = 0, and consequently �⇤ is injective. Thus L�1 ⇢ O

X

can be
identified with O

X

(�D) with D e↵ective. This implies degL = degD � 0,
which is a contradiction.

Corollary 1.5.9. If degL > 2g � 2 then H1(X,L) = 0.

Proof. By corollary 1.3.4 deg⌦1

X

⌦L�1 = 2g� 2�degL < 0. This implies that
H0(X,⌦1

X

⌦ L�1) = 0.

Lemma 1.5.10. If degL > 2g � 1, then H0(X,L) 6= 0

Proof. Choose p 2 X, and let C
p

be the skyskraper sheaf

C
p

(U) =

(
C if p 2 U

0 otherwise
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Then we have an exact sequence

0 ! O
X

(�p) ! O
X

! C
p

! 0

Tensoring with L gives a sequence

0 ! L(�p) ! L ! C
p

! 0

because C
p

⌦ L ⇠= C
p

. Therefore we get an exact sequence

H0(X,L) ! C ! H1(X,L(�p)) = 0

This proves the lemma.

Proof of proposition 1.5.7. Let L be a line bundle. By the previous L(F ) has a
nonzero section for degF � 0. This gives a nonzero map O

X

! L(D) or dually
a nonzero map L�1(�F ) ! O

X

. Arguing as above, we see that L�1(�F ) =
O

X

(�E) for some e↵ective divisor E. Therefore L ⇠= O
X

(E � F ).

1.6 Harmonic forms

We outline the proof of theorem 1.5.4. We start with a seemingly unrelated
problem. Recall that de Rham cohomology

H1

dR

(X,C) =
{↵ 2 E1(X) | d↵ = 0}
{df | f 2 C1(X)}

So an element of it is really an equivalence class. Does such a class have a
distinguished representative? We can answer the analogous problem in finite
dimensional linear algebra by the method of least squares: given a finite di-
mensional inner product space V with a subspace W , there is an isomorphism
f : V/W ⇠= W? where f(X) 2 X is the element with smallest norm. We intro-
duce a norm on our space as follows. In local analytic coordinates z = x + yi,
define ⇤dx = dy, ⇤dy = �dx. This is amounts to multiplication by i in the
cotangent plane, so it is globally well defined operation. We extend this to
C-linear operator. Then

(↵,�) =

Z

X

↵ ^ ⇤�̄

gives an inner product on E1(X) and therefore a norm ||↵||2 = (↵,↵).

Theorem 1.6.1 (Hodge theorem). Every cohomology class has unique repre-
sentative which minimizes norm.

We want to explain the uniqueness part. First we need to understand the
norm minimizing condition in more explicit terms. We define a 1-form ↵ to be
harmonic if d↵ = d(⇤↵) = 0. (This is a solution of a Laplace equation, as the
terminology suggests, but we won’t need this.)
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Lemma 1.6.2. A harmonic form is the unique element of smallest norm in
its cohomology class. Conversely, if a closed form minimizes norm in its class,
then it is harmonic.

Proof. For simplicity, let’s prove this for real forms.
As a first step, we can establish the identity

hdf,↵i = �
Z

X

fd⇤↵ (1.3)

by observing that Z

X

d(f ^ ⇤↵) = 0

by Stokes’ and then expanding this out. Therefore

||↵+ df ||2 = ||↵||2 + 2hdf,↵i+ ||df ||2 = ||↵||2 � 2

Z

X

fd⇤↵+ ||df ||2 (1.4)

If ↵ is harmonic, then

||↵+ df ||2 = ||↵||2 + ||df ||2 > ||↵||2

when df 6= 0.
Now suppose that ||↵||2 is minimal in its class. Then for any f , we must

have
d

dt
||↵+ t||2|

t=0

= 0

Using (1.4) we conclude that

Z

X

fd⇤↵ = 0

Since f is arbitrary, we must have d⇤↵ = 0.

A special case of the uniqueness statement, which follows directly from (1.3),
is

Corollary 1.6.3. 0 is the only exact harmonic form.

The proof of the existence statement for theorem 1.6.1 is where most of the
analytic subtleties lie. We won’t give the proof, but refer the reader to Gri�ths-
Harris or Wells. The only thing we want to observe is that the proof yields an
extension of theorem 1.6.1 which applies to non closed forms.

Theorem 1.6.4 (Hodge theorem II). Any form E1(X) can be uniquely decom-
posed into a sum �+ df + ⇤dg, where � is harmonic and f, g are C1 functions.

Proposition 1.6.5.
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(a) A harmonic 1-form is a sum of a (1, 0) harmonic form and (0, 1) harmonic
form.

(b) A (1, 0)-form is holomorphic if an only if it is closed if and only it is
harmonic.

(c) A (0, 1)-form is harmonic if and only if it is antiholomorphic i.e. its
complex conjugate is holomorphic.

Proof. If ↵ is a harmonic 1-form, then ↵ = ↵0 + ↵00, where ↵0 = 1

2

(↵+ i ⇤ ↵) is
a harmonic (1, 0)-form and ↵00 = 1

2

(↵� i ⇤ ↵) is a harmonic (0, 1)-form.
If ↵ is (1, 0), then d↵ = @̄↵. This implies the first half (b). For the second

half, use the identity

⇤dz = ⇤(dx+ idy) = dy � idx = �idz

Finally, note that the harmoncity condition is invariant under conjugation, so
the (c) follows from (b).

Proposition 1.6.6. H1(X,O
X

) is isomorphic to the space of antiholomorphic
forms.

Proof. Let H ⇢ E01(X) denote the space of antiholomorphic forms. We will
show that

⇡ : H ! E01(X)/ im @̄

is an isomorphism. Suppose that ↵ 2 E01(X). By theorem 1.6.4, we may choose
a harmonic form � such that � = ↵ + df + ⇤dg for some f, g 2 C1(X). Then
the (0, 1) part of � gives an element �0 2 H such that �0 = ↵+ @̄(f + ig). This
shows that ⇡ is surjective.

Suppose that ↵ 2 ker⇡. Then ↵ = @̄f for some f . Therefore ↵ + ↵̄ = df .
Consequently ↵+↵̄ is exact and harmonic, so ↵+↵̄ = 0. This implies ↵ = 0.

Corollary 1.6.7. ↵ 7! ↵̄ gives a conjugate linear isomorphism

H0(X,⌦1

X

) ⇠= H1(X,O
X

)

Proof of theorem 1.5.4. We have a linear map

� : H0(X,⌦1

X

) ! H1(X,O
X

)⇤

which assigns to ↵ the functional h↵,�i. If ↵ 2 H0(X,⌦1

X

) is nonzero then

�(↵)(↵̄) =

Z

X

↵ ^ ↵̄ 6= 0

Therefore � is injective. Since these spaces have the same dimension, � is an
isomorphism.

The general Serre duality can also be proved by a similar method.
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1.7 Riemann-Roch

Let hi(L) = dimHi(X,L), and �(L) = h0(L)� h1(L).

Theorem 1.7.1 (Riemann-Roch). If X is compact curve of genus g, and D is
a divisor

�(O
X

(D)) = degD + 1� g

Proof. Let D =
P

n
i

p
i

. We prove this by induction on the “mass” M(D) =P
|n

i

| . When M(D) = 0, then this is just the equality

�(O
X

) = 1� g

We follows from the facts h0(O
X

) = 1, h1(O
X

) = g established earlier.
Given p, we have an exact sequence

0 ! O
X

(�p) ! O
X

! C
p

! 0

Tensoring by O
X

(D) gives

0 ! O
X

(D � p) ! O
X

(D) ! C
p

! 0

Observe that H0(X,C
p

) = C by definition and H1(X,C
p

) = 0 because C
p

is
flasque. Thus

�(O
X

(D)) = �(O
X

(D � p)) + �(C
p

) = �(O
X

(D � p)) + 1

Therefore
�(O(D))� degD = �(O(D � p))� deg(D � p)

or by changing variable and writing the formula backwards

�(O(D))� degD = �(O(D + p))� deg(D + p)

Since we can choose p so that M(D ± p) < M(D). One of these two formulas
shows that �(O

X

(D)) equals 1� g.

Using Serre duality, we get the more classical form of Riemann-Roch

Corollary 1.7.2. Let K be a canonical divisor, then

h0(O(D))� h0(O(K �D)) = degD + 1� g

In particular

h0(O(D)) � degD + 1� g (Riemann’s inequality)

The Riemann-Roch theorem is a fundamental tool in the study of curves.
One consequence is that any compact complex curve carries a nonconstant mero-
morphic function. From this, it is not di�cult to deduce the following important
fact:
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Theorem 1.7.3. Every compact Riemann surface is a nonsingular projective
algebraic curve.

So from here on, we won’t make a distinction between these notions. We
also make use of GAGA (Serre, Géometrie algébrique et géometrie analytique)
to switch between algebraic and analytic viewpoints whenever convenient.

Theorem 1.7.4 (Chow’s theorem/GAGA).

(a) Meromorphic functions on a projective varieties are rational

(b) Holomorphic maps between projective varieties are regular.

(c) Submanifolds of nonsingular projective varieties are subvarieties.

(d) Holomorphic vector bundles on projective varieties are algebraic, and their
cohomology groups can be computed algebraically i.e. as the cohomology
of the corresponding sheaves on the Zariski topology

As an easy application of Riemann-Roch, let us classify curves of genus  2,
where by curve we mean a nonsingular projective curve below.

Lemma 1.7.5. The only curves of genus 0 is P1

C.

Proof. Let X be a curve of genus 0. Let p 2 X. By Riemann-Roch h0(O(p)) �
2. This implies that there exists a nonconstant meromorphic function f having a
pole of order 1 at p and no other singularities. Viewing f as a holomorphic map
X ! P1, we have f�1(1) = p and the ramification index e

p

= 1. This means
that the degree of f is 1, and one can see that this must be an isomorphism.

From the proof, we obtain the following useful fact.

Corollary 1.7.6. If for some p, h0(O(p)) > 1, then X ⇠= P1.

We saw earlier that if f(x) is a degree 4, polynomial then y2 = f has genus
1. Such a curve is called elliptic.

Lemma 1.7.7. Conversely, any genus 1 curve can be realized as degree 2 cover
of P1 branched at 4 points.

Proof. Let X be a curve of genus 1. Let p 2 X. By Riemann-Roch h0(O(np)) �
n for n � 0. Thus we can find a nonconstant function f 2 H0(O(2p)). Either
f has a pole of order 1 or order 2 at p. The first case is ruled out by the
last corollary, so we are in the second case. Viewing f as a holomorphic map
X ! P1, we have f�1(1) = p with e

p

= 2. Therefore f has degree 2. Now
apply the Riemann-Hurwitz formula to conclude that f has 4 branch points.

Lemma 1.7.8. Any genus 2 curve can be realized as degree 2 cover of P1

branched at 6 points.
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Proof. Either using Riemann-Roch or directly from corollary 1.5.5, we can see
that h0(⌦1

X

) = 2. Choose two linearly independent holomorphic 1-forms !
i

. The
ratio f = !

2

/!
1

is a nonconstant meromorphic function. Since deg div(!
2

) =
2(2)�2 = 2, f has most two poles counted with multiplicity. Therefore f : X !
P1 has degree at most 2, and as above we can see that it is exactly 2. Again
using the Riemann-Hurwtiz formula shows that f has 6 branch points.

1.8 Genus 3 curves

Continuing the analysis, we come to genus 3 curves. Here things become more
complicated. Some of these curves are hyperelliptic, but not all.

Theorem 1.8.1. A genus 3 curve is either a hyperelliptic curve branched at 8
points or a nonsingular quartic in P2. These two cases are mutually exclusive.

Fix a genus 3 curve X. Then h0(⌦1

X

) = 3. We can choose a basis !
0

,!
1

,!
2

.

Lemma 1.8.2. For every p 2 X, one of the !
i

(p) 6= 0. (This condition says that
⌦1

X

is generated by global sections, or in classical language that the canonical
linear system is based point free.)

Proof. Suppose that all !
i

(p) = 0 for some p. Then !
i

would define sections of
⌦1

X

(�p). So we must have h0(⌦1

X

(�p)) � 3. But by Riemann-Roch

h0(⌦1(�p))� h0(O(p)) = 2(3)� 2� 1 + (1� 3) = 1

Since h0(O(p)) = 1, we obtain h0(⌦1(�p)) = 2. This is a contradiction.

Choosing a local coordinate z, we can write !
i

= f
i

(z)dz. By the previous
lemma, the point [f

0

(z), f
1

(z), f
2

(z)] 2 P2

C is defined at all points of the coordi-
nate chart. If we change coordinates to ⇣, then !

i

= uf
i

d⇣, where u = dz

d⇣

. This

means that the point [f
0

(z), f
1

(z), f
2

(z)] 2 P2

C is globally well defined. In this
way, we get a nonconstant holomorphic map

 : X ! P2

called the canonical map. The image is a curve in P2, which we denote by Y .
We can factor  as ⇡ : X ! Y followed by the inclusion Y ⇢ P2. Let d

1

be
the degree of ⇡. Let x

i

denote the homogenous coordinates of P2. Consider the
line ` ⇢ P2 defined by a

0

x
0

+ a
1

x
1

+ a
2

x
2

= 0. If we assume that a
i

are chosen
generically, then ` \ Y is a union, of say d

2

= deg Y “distinct points” (more
precisely, the scheme theoretic intersection is a reduced subscheme of length d

2

).
If we pull this back to X we get d

1

d
2

points which coincides with the zero set
of

P
a
i

!
i

. The degree of a canonical divisor is 4. Thus we get three cases:

(1) deg Y = 4 and ⇡ has degree 1,

(2) deg Y = 2 and ⇡ has degree 2,
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(3) deg Y = 1 and ⇡ has degree 4.

In fact, case (3) is impossible because it would imply a linear dependence
between the !

i

. In case (2), Y is an irreducible conic, which is necessarily
isomorphic to P1. So this is the hyperelliptic case. Using Hartshorne, chap IV,
prop 5.3, we see that conversely a hyperelliptic genus 3 curve necessarily falls
into case (2). By Riemann-Hurwitz this must be branched at 8 points.

To complete the analysis, let us take closer look at case (1). Here ⇡ is
birational. So X is necessarily the normalization of Y .

Lemma 1.8.3. Y is nonsingular. Therefore X ! Y is an isomorphism.

Proof. Suppose that Y is singular. Consider the sequence

0 ! O
Y

! ⇡⇤OX

! C ! 0

where the cokernel C is a sum of sky scraper sheaves
M

p

(
M

q2⇡�1
(p)

O
X,q

)/O
Y,p

supported a the singular points of Y . Let �
p

denote the dimension of each
summand above. At least one of these numbers is positive because Y is singu-
lar. C is flasque, therefore H1(Y,C) = 0. Also since ⇡ is finite, Hi(X,O

X

) =
Hi(Y,⇡⇤OX

) (c.f. Hartshorne, Algebraic Geometry, chap III ex 4.1). Conse-
quently

�(O
X

) = �(O
Y

) +
X

�
p

and therefore
�(O

X

) > �(O
Y

)

The arithmetic genus p
a

of Y is defined so �(O
Y

) = 1 � p
a

. The inequality
says that p

a

is strictly less that the genus of X. It is worth pointing that the
argument is completely general; it applies to any singular curve. To obtain a
contradiction, we show that p

a

= 3. This will follow from the next result.

Theorem 1.8.4. If C ⇢ P2 is a curve of degree d, then the arithmetic genus
(= the ordinary genus when C is nonsingular)

p
a

=
(d� 1)(d� 2)

2

Before starting the proof, we summarize some basic facts about projective
space. Proofs of these statements can be found in Hartshorne. Let x

0

, . . . , x
n

be homogeneous coordinates of Pn

C. We have an open cover consisting of U
i

=

{x
i

6= 0}. U
i

⇠= An with coordinates x0
xi
, . . . ,cxi

xi
, . . . xn

xi
. Let OPn(d) be the

line bundle determined by the cocycle
⇣

xi
xj

⌘
d

. Suppose that d � 0. Given a

homogeneous degree d polynomial f(x
0

, . . . , x
n

), the transformation rule

f

✓
x
0

x
j

, . . . ,
x
n

x
j

◆
=

✓
x
i

x
j

◆
d

f

✓
x
0

x
i

, . . . ,
x
n

x
i

◆
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shows that it determines a section of H0(Pn,OPn(d)). In fact, all sections are
of this form. Therefore

h0(OPn(d)) =

✓
n+ d

n

◆
, d � 0

All the other cohomology groups are zero. We also have a duality

hi(OPn(�d)) = hn�i(OPn(�n� 1 + d))

Therefore

�(OP2(�d)) = h2(O(�d)) =
(d� 1)(d� 2)

2
(1.5)

Under the this identification

H0(Pn,OPn(d)) ⇠= Hom(OPn ,OPn(d))

a nonzero polynomial f determines an injective morphism OPn ! OPn(d). Ten-
soring with OPn(�d) yields an injective morphism OPn(�d) ! OPn . The image
can be identified with the ideal sheaf generated by f .

Proof of theorem. We have an exact sequence

0 ! OP2(�d) ! OP2 ! O
C

! 0

Therefore
�(O

C

) = �(OP2)� �(OP2(�d))

= 1� (d� 1)(d� 2)

2

All of these results taken together implies theorem 1.8.1.

1.9 Automorphic forms

We give one more application of the Riemann-Roch. The group SL
2

(R) acts
on the upper half plane H = {z 2 C | Imz > 0} by fractional linear trans-
formations. Suppose that � ⇢ SL

2

(R) is a discrete subgroup which acts freely
on H (or more precisely suppose that �/{±I} acts freely). Then the quotient
X = H/� is naturally a Riemann surface. Let us assume that X is compact.
The genus g can be shown to be at least two by the Gauss-Bonnet theorem. An
automorphic form of weight 2k is a holomorphic function f(z) on H satisfying

f(z) = (cz + d)�2kf

✓
az + b

cz + d

◆

for each ✓
a b
c d

◆
2 �

When f(z) has weight 2, f(z)dz is invariant under the group. Therefore it
defines a holomorphic form on X. It follows that
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Proposition 1.9.1. The dimension of the space of weight two automorphic
forms is g.

If f(z) has weight 2k, then f(z)dz⌦k defines a section of (⌦1

X

)⌦k = O
X

(kK).
From Riemann-Roch

h0(O(kK))� h0(O((1� k)K)) = deg(kK) + (1� g) = (2k � 1)(g � 1)

If k > 1, then deg(1� k)K < 0. Therefore:

Proposition 1.9.2. If k > 1, the dimension of the space of weight 2k automor-
phic forms is (g � 1)(2k � 1).
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