Chapter 1

Basic curve theory

1.1 Hyperelliptic curves

As all of us learn in calculus, integrals involving square roots of quadratic poly-
nomials can be evaluated by elementary methods. For higher degree polynomi-
als, this is no longer true, and this was a subject of intense study in the 19th
century. An integral of the form
x
/ GO (1.1)

V()

is called elliptic if f(x) is a polynomial of degree 3 or 4, and hyperelliptic if f
has higher degree, say d.

It was Riemann who introduced the geometric point of view, that we should
really be looking at the algebraic curve X° defined by

y? = f(x)

in C2. When f(z) = Hg(x — a;) has distinct roots (which we assume from
now on), X° is nonsingular, so we can regard it as a Riemann surface or one
dimensional complex manifold. Since surfaces will later come to mean two di-
mensional complex manifolds, we will generally refer to this as a (complex non-
singular) curve. It is convenient to add points at infinity to make it a compact
complex curve X called a (hyper)elliptic curve. One way to do this is to form
the projective closure

XO:{[:C?%Z] € p? | F(Iayaz) :O}

where
Fla,y,2) = 5222 = [[(@ = ai2) = 0

is the homogenization of y? — f(z). Unfortunately, X° will usually be singular.
To see this, let’s switch to the affine chart y = 1. Then X? is given by

2472 H(x —a;z)=0



The partials vanish at x = 0,y = 0, as soon as d > 3.

We have to perform another operation on X which is called resolving sin-
gularities to obtain a nonsingular projective curve X containing X°. We give
two constructions, both with their advantages and disadvantages. The first is a
general procedure called normalization. If A is an integral domain with fraction
field K, its normalization or integral closure is the ring

A={a€ K |3 monic f(t) € A[t], f(a) =0} D A

Suppose that X is an algebraic variety (or integral scheme) then X is obtained
by gluing affine varieties U; (or schemes) with coordinate rings A;. Let U; =
SpecA;. Then these can be glued to get a new variety /scheme X called the
normalization. See Mumford’s Red Book for details. The normalization comes
with a morphism X - X.

Here is an example. Let A = k[z,y]/(y*> — 23) be the coordinate ring of a
cusp over a field k. Then y/z € A because it satisfies 2 — z = 0. With more
work, we can see that A = k[y/z]. In general, by standard commutative algebra

Theorem 1.1.1. If A is a one dimensional integral domain, then A is Dedekind
domain; in particular the localizations of A at mazimal ideals are discrete val-
uation rings and therefore reqular.

Corollary 1.1.2. If X is a curve i.e. one dimensional variety, then X isa
nonsingular curve with the same function field as X.

Returning to the original problem. Given X© as above, X can be simply be
taken to be it’s normalization. Unfortunately, this process is not very geometric.
So we briefly describe another procedure. The blow up of the affine plane A?
at the origin is the quasiprojective variety

B = BloA? = {(v,£) € A> x P | v € £}

= {(z,5,[X,Y]) | A* x P! | 2Y = Xy}

This comes with a projection 7 : B — A? which is an isomorphism over A2 —{0}.
The blow of the projective plane can be defined as the closure of B in P? x P!.
Using the Segre embedding, we can see that this is a projective variety.

Given a curve C' C A? (or P?), the closure C; of #=1C — {0} is the blow
up of C. This is also called the strict transform of C. Let’s calculate this for
the cusp 42 — 23 = 0 in A%2. Then B is covered by open sets where X = 1 and
Y = 1. The intersection of C'y with X =1 is the irreducible component of

(=232 =y} & {2(Y? —2) =0,y = 2Y}

dominating C. This is the locus Y2 — 2 = 0, which is nonsingular. In general,
the process many steps. For the example, y2 = 2°, the first step produces
Cy : Y2 — 23 =0, which is “less singular” than before. Blowing it up a second
time at x =Y = 0, yields a nonsingular curve Cs.



Theorem 1.1.3. Given a curve X, after finite number of blow ups, we obtain
a nonsingular curve X — X. This coincides with the normalization.

Corollary 1.1.4. X can be embedded into a projective space (generally bigger
than P?).

1.2 Topological genus

Let’s work over C. Then a nonsingular projective curve X C P¢ can be viewed
as complex submanifold and therefore a Riemann surface.! In particular, X
can be viewed a compact C* 2 (real) dimensional manifold. The fact that X is
complex implies that it is orientable. Before describing the classification, recall
that the give two connected n-manifolds X, X5, their connected sum X;#X,
is obtained by removing an n-ball from both and joining them by the cylinder
Sn=1 % 0, 1].

Theorem 1.2.1. Any compact connected orientable 2-manifold is homeomor-
phic to either the two sphere S? or connected sum of g 2-tori for some integer
g > 0.

The integer g is called the genus. However, we will refer to as the topological
genus temporarily until we have established all the properties. We set g = 0
in the case of S2. Let’s relate this to more familiar invariants. Recall that
the Euler characteristic e(X) of a (nice) topological space is the alternative
sum of Betti numbers. When the space admits a finite triangulation, then it is
number of vertices minus the number of edges plus ... We can triangulate S? as
a tetrahedron, therefore e(S?) = 4 — 6 + 4 = 2. In general, we can compute the
Euler characteristic using the following inclusion-exclusion formula:

Proposition 1.2.2. If X = UUYV is a union of open sets, e(X) = e(U) +
e(V)—e(UNnV).

Proof. In general, given an exact sequence of vector spaces
VB v
> (1) dim V' =0
Now apply this to the Mayer-Vietoris sequence
LHY(X) = HW) @ H(V) - HUNV) — ...
where H(X) = H(X,C). O
Proposition 1.2.3. Given a compact orientable surface X of genus g

(a) e(X) =2 -2

IRecall that a Riemann surface is the same thing as a one dimensional complex manifold.



(b) If D C X is a disk, e(X —D)=1-2g

Proof. By the previous proposition have e(X) = e(D’) + e(X — D) —e(D' N
(X — D)) where D' D D is a slightly larger disk. Since, Betti numbers, and
therefore Euler characteristic, is invariant under homotopy, e(D’) = e(pt) = 0
and e(D' N (X — D)) = e(S') = 0. Therefore ¢(X — D) =¢(X)—-1=1-2g
assuming (a).

We prove (a) by induction. The g = 0 case is clear. We can write X = Y#T,
where Y has genus g — 1. Therefore

e(X)=e(Y =D)+e(T—D)—e(S*x[0,1]) =1-2(g—1)—1=2—2g
O

We can use this to compute the genus for our (hyper)elliptic curve X ob-
tained from y?> = f(x) as before. We have holomorphic map p : X — P!
extending the projection of the affine curve to the z-axis. Note that this map
is 2 to 1 for all but finitely many points called the branch points. These consist
of the zeros of f and possibly co. Let r be the number of these points. FEi-
ther r = deg f or deg f + 1. Let us triangulate P!, making sure to include the
branch points among the vertices and no edge connects two branch points. Let
V = r+V’ be the number of vertices, E the number of edges and F' the number
of faces. Since P! is S? as topological space,

V-E+F=¢P)=2

Take the preimage of this triangulation under p. This gives a triangulation of
X, with r + 2V’ vertices, 2F edges and 2F faces. Therefore g is the genus of
X, we have

2-29=r+2V -2E4+2F=2(V—-E+F)-R=4—r
Thus

Proposition 1.2.4.

1
=-r—1
g=5r

Note that this forces R to be even, and this allows us to conclude that

deg f if deg f is even
T =
deg f +1 otherwise

This result generalizes. Let f : X — Y be a surjective holomorphic map
between compact curves. A point p € X is called a ramification point if the
deriviative of p vanishes at it. An image of a ramification point will be called a
branch point. (Some people reverse the terminology.) There are a finite number
of branch points B After removing these we get a finite sheeted covering space
X — f7'B — Y — B. The number of sheets is called the degree of p. Let us



denote this by d. So for each nonbranch point |f~*(q)| = d. Now suppose that
q is a branch point. Choose a small disk D centered at g. The premiage f~!(D)
is a union of disks D; centered at p; € f~(q). We can choose coordinates so
D; — D is given by y = z¢. The exponents e¢; = e(p;) are called ramification
indices. After perturbing g slightly, p; splits into a union of e; points. Therefore

Zei:d

By the same sort of argument as before, we get
Theorem 1.2.5 (Riemann-Hurwitz). If g(X) and g(Y') denote the genera of
X and Y,

2(g(X) —2) =2d(g(X) = 1)+ Y e(p) —1

peX

1.3 Degree of the canonical divisor

While the previous description of the genus is pretty natural. It is topological
rather than algebro-geometric. We give an alternative description which actually
works over any field.

Let X be a compact curve. A divisor on X is finite formal sum D = Y n;p;,
n; € Z, p; € X. The degree degD = Y n;. If f is a nonzero meromorphic
function, the associated principal divisor

div(f) =Y _ordy(f)p
where ord,(f) is the order of the zero f at p or minus the order of the pole.
Proposition 1.3.1. degdiv(f) =0

Proof. Let p; be the set of zeros and poles of f, and let D; be a small disk
centered at p;. We can express ord,,, (f) as the residue of df /f at p;. Thus by

Stokes
, 1 df 1 df
degdivlf) = o Z/apv T omi //X_UD,. ! (f) -0

Given a nonzero meromorphic 1-form «, set

div(a) = Z ordp(a)p

Such a divisor is called a canonical divisior. Inspite of the similarity of nota-
tion, it is usually not principal. However any two canonical divisors differ by a
principal divisor. Consequently the degree of a canonical divisor depends only
on X. We write it as deg Kx. For this to make sense, we need to show that a
nonzero constant meromorphic form actually exists. Let us avoid the issue for
now by restricting our attention to smooth projective curves.?

2In fact, as we will see later, all compact Riemann surfaces are of this form.



Lemma 1.3.2. The degree of a canonical divisor on P' is —2.

Proof. let z be the standard coordinate on C. We can use ( = 2z~ ! as the
coordinate around co. Since dz = d{~! = —(~2d(. This proves the lemma. [

Theorem 1.3.3 (Riemann-Hurwitz II). Let f : X — Y be a branched cover of
degree d, then
deg Kx = deg Ky + Z e(p) — 1
peX

Proof. Let o be a nonzero meromorphic form on Y We can assume, after
multiplying « by a suitable meromorphic function, that set of zeros or poles
are disjoint from the branch points. If ¢ is a zero or pole of a or order
n, then f*a has zero or pole at each p € f~'¢ of of order n. A a branch
point ¢, locally o = u(y)dy, where u is holomorphic and nonzero at g. Then
fra = e;u(z® )z~ 'dy Therefore deg(div(f*a) is given by the right side of the
formula, we are trying to prove. O

Corollary 1.3.4. For any nonsingular projective curve, deg Kx = 2g — 2.

Observe that this says that deg Kx = —e(X). A more conceptual explana-
tion can be given using Chern classes discussed later. The Chern number of the
tangent bundle is e(X), whereas deg Kx is the Chern number of the cotangent
bundle.

1.4 Line bundles

Given X be as above. The divisors from a group Div(X), and the principal
divisors form a subgroup Princ(X). The divisor class group

Cl(X) = Div(X)/Princ(X)
We have a surjective homorphism
deg: Cl(X) = Z

induced by the degree. To understand the structure of the kernel C1°(X), we
bring in modern tools. Recall that a holomorphic line bundle is a complex
manifold L with a holomorphic map 7 : L — X which “ locally looks like” the
projection C x X — X. More precisely, there exists an open cover {U;} and
holomorphic isomorphisms ; : 7~ 1U; — U; x C, which are linear on the fibres.
Such a choice called a local trivialization. Given a line bundle 7 : L — X, the
sheaf of sections

L) ={f:U— 7| f holomorphic and 7 o f = id}

is a locally free Ox-module of rank 1. Conversely, any such sheaf arises this
way from a line bundle which is unique up to isomorphism. We will therefore
identify the two notions.



To be a bit more explicit, fix L with a local trivialization. Set U;; = U; NU;
etc., and let

Pt )
(I%'j : Uij x C L 7T_1Uij ﬂ> Uij x C
It is easy to see that this collection of maps satisfies the 1-cocycle conditions:
Qi = DDk, on Uy
D, = ;!
b, =id
We can decompose
®ij(x) = (2, dij(x))

where ¢;; : U;; — C* is a collection of holomorphic functions satisfying the 1-
cocycle conditions. This determines a Cech cohomology class in H'({U;}, O%).
Conversely, such a class determines a line bundle. We can summarize everything
as follows.

Theorem 1.4.1. There is an bijection between
1. the set of isomorphism classes of line bundles on X
2. the set of isomorphism classes of rank one locally free Ox-modules
3. HY(X,0%)

The last set is of course a group, called the Picard group. It is denoted
by Pic(X). The group operation for line bundles, or sheaves is just tensor
product. The inverse of the dual line bundle £~ = Hom(L, Ox). We have an
exact sequence of sheaves

07— 0y <5 Oy =1
This yields a long exact sequence
HY(X,Z) - H'(X,0x) = Pic(X) 3 H*(X,7)

The last map is called the first Chern class. This is can viewed as an integer
because H?(X,Z) = Z. The kernel of ¢; is denoted by Pic®(X). We will show
later that H'(X,Z) sits as a lattice in H*(X, Ox). Therefore Pic’(X) has the
structure of a complex torus.

We can relate this to the divisor class group. Let K = C(X) be the field
meromorphic functions on X. Given D =Y n;p; € Div(X), define the sheaf

Ox(D)(U)={f € K | ordy, f +n; >0}

This is a locally principal fractional ideal sheaf, and therefore a line bundle. A
straight forward verification shows that



Lemma 1.4.2.
Ox(D1) ® Ox(D3) = Ox (D1 + D2)

and
Ox(D) = Ox
when D s principal.
Therefore map D +— Ox (D) induces a homomorphism CI(X) — Pic(X).
Theorem 1.4.3. The above map gives an isomorphism Cl(X) = Pic(X).

Proof of injectivity. Let D = > n;p;. Suppose that Ox (D) = Ox. Then the
section 1 on the right corresponds to a global section f € H(X,Ox (D)) which
generates all the stalks of O(D),. We can identify O(D),, with =™ O,,, where
x is a local parameter. For f to generate = "0, we must have ord,, f =
—n;. Therefore D = div(f~1). Thus the homomorphism CI(X) — Pic(X) is
injective. We will prove surjectivity in the next section. O

We have an isomorphism H?(X,Z) = Z, therefore ¢1(L£) can be viewed as a
number. Let us explain how to compute it in terms of a 1-cocycle ¢;; for £ on
U = {U;}. We have another sequence

O—>(CX—>OXE>Q§—>O

We can map the exponential sequence to this

0 Z Ox 0% 1
i l— imr\l/*ldbg
0 C Ox oL 0

This shows that ¢; can be factored as
HY(X,0%) —» H' (X, Q%)
composed with the connecting map
HY(X,0%) - H*(X,C)

We need to make the last part explicit. Let o;; € Z U, Q') be the cocycle
ﬁdlog ¢ij. We can view this as a 1-cocycle in Z'(U,EY), where % are
C* 1-forms. But we know that H'(X,E%) = 0 because % is soft. Therefore
we can find C*° 1-forms «; such that a;; = o; — ;. Since da;; = 5aij =0,
B = da; is a globally defined 2-form. The de Rham class of 3 is precisely what
we are after. Under the isomomorphism

H?*(X,C)=C



given by integration,

q(c):/xﬁ

This is really only a first step. A more satisfying answer is given by the next
theorem.

Theorem 1.4.4. After identifying H*(X,Z) = Z, ¢1(Ox (D)) = deg D.

Proof. Tt’s enough to prove that ¢;(Ox(—p)) = —1 for every p € X. Let
Uy be a coordinate disk around p with coordinate z, and let U; = X — {p}.
Ox(—p) C Ox is the ideal of p. On Uy, z gives a trivializing section; on U; we
can use 1. The change of basis function ¢g; = 27! is the cocycle for O(p). So
our task is to compute fx B, where 3 is obtained from ¢o1 = z~! by the above
process. We split X = FU B, where B = U is the closed disk and F = X — U.
Let C' = OB oriented counterclockwise around p. By Stokes and the residue

theorem
/X,BZ/E,@'i‘/Bﬁ:/Edal-i-/Bdao2/0040—041

=5 =-1
2 Jo 2

This concludes the proof.
Corollary 1.4.5. CI°(X) = Pic’(X).

1.5 Serre duality

Let X be a connected compact complex curve of genus g. Let Ox denote the
sheaf of holomorphic functions and let Q% denote the sheaf of holomorphic
1-forms on X. We have an exact sequence of sheaves

0-Cx > 0x %50k 50
which gives a long exact sequence
0— H°(X,C) — H°(X,0x) — H°(X,Q%) — H'(X,C)

Since X is connected H°(X,C) = HY(X,0x) = C, where the last equality
follows from the maximum principle. Therefore we have an injection

0— H°(X,04) = H'(X,C)

In particular, dim H°(X, Q%) < 2g. In fact, we do much better. If we identify
H'(X,C) with de Rham cohomology, then we have a pairing

H'(X,C) x HY(X,C) —» C

10



given by
wp) = [ ans (1.2)

A suitably strong form of Poincaré duality shows that this is a nondegenerate
pairing. It is clearly also skew symmetric i.e.

<O‘7B> = _<ﬂ70‘>
We quote the following fact from linear algebra

Theorem 1.5.1. If V is finite dimensional vector with a nondegenerate skew
symmetric pairing (,), dimV is even. If W C V is subspace such that (o, 3) =0
for all a, 8 € W (W is called isotropic), then dim W < %dim V.

Corollary 1.5.2. dim H°(X, Q%) <g.
Proof. The formula (1.2) makes it clear that this is isotropic. O
Recall last semester, we constructed a Dolbeault resolution
0= Ox =&Y &4 el
where £ (resp 5)(?’1)) is the sheaf of C*° functions (resp locally C*° multiples

of dz. ), f is (0,1)-part of df. Since this gives a soft resolution of Oy, we can
use this to compute sheaf cohomology

HO(X, Ox) = ker[€X(X) & £9(X)]

HY(X,0x) = coker[€P(X) 2 €% (X))
HY (X,0x)=0,i>2
Suppose that o € Q'(X) and § € £V (X). Define

@8)= [ ans
b'e
as before.
Lemma 1.5.3. This gives a well defined pairing
() HY(X,0%) x HY(X,0x) = C

Proof. Tt is enough to show that (a, df) = 0. This follows from Stokes’ theorem
because a A df = +d(fa). O

Theorem 1.5.4 (Serre duality I). The above pairing is perfect, i.e. it induces
an isomorphism
HY(X,0x) = HY(X, QL)

11



Corollary 1.5.5. dim H(X, Q%) =dim H'(X,0x) =g

Proof. The theorem gives dim H%(X, Q%) = dim H!(X,Ox). Call his number
h. Earlier we saw that h < g. The exact sequence

0— H°(X,Qx) = H'(X,C) - H (X, Ox)
forces 2g < 2h. O
What we stated above is really a special case of Serre duality:

Theorem 1.5.6 (Serre duality II). If L is a line bundle then there is a natural
pairing inducing an isomorphism

HYX,L)= H (X, Q% @ £71)*

We can use this finish the proof of theorem 1.4.3. It remains to prove that
the map Cl(X) — Pic(X) is surjective that is:

Proposition 1.5.7. Any line bundle is isomorphic to Ox (D) for some divisor
D.

We first need a few lemmas which are useful by themselves.
Lemma 1.5.8. Ifdeg £ < 0, then H°(X, L) = 0.

Proof. A nonzero section would correspond to a nonzero map o : Ox — L.
Dualizing gives a nonzero map

o LT 5 Oy

Consider £ = kero*. Then K ® L C Ox is ideal sheaf. It must by either
0 or of the form Ox(—D) for some effective divisor D (effective means that
the coefficients are nonnegative). It follows that either K = L71(=D) := L7 ®
O(—D) if it isn’t zero. If D = 0, then o* = 0 which is impossible. If D > 0, then
OOx would contain the nonzero torsion sheaf £~!/K which is also impossible.
Therefore K = 0, and consequently ¢* is injective. Thus £7! C Ox can be
identified with Ox(—D) with D effective. This implies deg £ = deg D > 0,
which is a contradiction. 0

Corollary 1.5.9. If deg L > 2g — 2 then H(X,L£) = 0.

Proof. By corollary 1.3.4 deg Q% ® £L7! = 29 —2 —deg £ < 0. This implies that
HOX, 0L @ £71) = 0. 0

Lemma 1.5.10. Ifdeg L > 2g — 1, then H*(X,£) #0

Proof. Choose p € X, and let C, be the skyskraper sheaf

C,(U) = C ifpeU
P )10 otherwise

12



Then we have an exact sequence
0—Ox(—p) - 0x —>C,—0
Tensoring with £ gives a sequence
0—L(-p) > L—>C,—0
because C, ® £ = C,. Therefore we get an exact sequence
HX,L) - C— HY(X,L(-p)) =0
This proves the lemma. O

Proof of proposition 1.5.7. Let L be a line bundle. By the previous £(F) has a
nonzero section for deg F' > 0. This gives a nonzero map Ox — L(D) or dually
a nonzero map L~ 1(—F) — Ox. Arguing as above, we see that L™}(—F) =
Ox (—E) for some effective divisor E. Therefore L = Ox(E — F). O

1.6 Harmonic forms

We outline the proof of theorem 1.5.4. We start with a seemingly unrelated
problem. Recall that de Rham cohomology

1 _{aegl(X)|da:0}
Han(X.0) = —0r 7 e e

So an element of it is really an equivalence class. Does such a class have a
distinguished representative? We can answer the analogous problem in finite
dimensional linear algebra by the method of least squares: given a finite di-
mensional inner product space V with a subspace W, there is an isomorphism
f:V/W =W where f(X) € X is the element with smallest norm. We intro-
duce a norm on our space as follows. In local analytic coordinates z = x + 1,
define *dx = dy, *dy = —dx. This is amounts to multiplication by 4 in the
cotangent plane, so it is globally well defined operation. We extend this to
C-linear operator. Then

i1 [Lani
X
gives an inner product on £1(X) and therefore a norm ||a||? = (a, ).

Theorem 1.6.1 (Hodge theorem). Every cohomology class has unique repre-
sentative which minimizes norm.

We want to explain the uniqueness part. First we need to understand the
norm minimizing condition in more explicit terms. We define a 1-form « to be
harmonic if da = d(xa) = 0. (This is a solution of a Laplace equation, as the
terminology suggests, but we won’t need this.)

13



Lemma 1.6.2. A harmonic form is the unique element of smallest norm in
its cohomology class. Conversely, if a closed form minimizes norm in its class,
then it is harmonic.

Proof. For simplicity, let’s prove this for real forms.
As a first step, we can establish the identity

d, =— dx* )
(@.0) =~ [ rasa (13)
by observing that
/ d(f Axa) =0
X

by Stokes’ and then expanding this out. Therefore
o+ df[* = [|a]|* + 2(df, @) + [|df]|* = [|a]|* — Z/de*oz+ ldfll® (1.4)

If « is harmonic, then
o+ df(1* = [le]|* + [|df || > [lal?

when df # 0.
Now suppose that ||a||? is minimal in its class. Then for any f, we must
have

d
%||04+t||2|t:0 =0

/de*a:()

Since f is arbitrary, we must have d*a = 0.

Using (1.4) we conclude that

O

A special case of the uniqueness statement, which follows directly from (1.3),
is

Corollary 1.6.3. 0 is the only exact harmonic form.

The proof of the existence statement for theorem 1.6.1 is where most of the
analytic subtleties lie. We won'’t give the proof, but refer the reader to Griffiths-
Harris or Wells. The only thing we want to observe is that the proof yields an
extension of theorem 1.6.1 which applies to non closed forms.

Theorem 1.6.4 (Hodge theorem II). Any form EY(X) can be uniquely decom-
posed into a sum B+ df + xdg, where B is harmonic and f,g are C°° functions.

Proposition 1.6.5.

14



(a) A harmonic 1-form is a sum of a (1,0) harmonic form and (0,1) harmonic
form.

(b) A (1,0)-form is holomorphic if an only if it is closed if and only it is
harmonic.

(¢) A (0,1)-form is harmonic if and only if it is antiholomorphic i.e. its
complex conjugate is holomorphic.

Proof. 1f a is a harmonic 1-form, then o = o + o/, where o/ = (o +i* ) is

a harmonic (1,0)-form and o = (o — i * @) is a harmonic (0, 1)-form.

If a is (1,0), then da = da. This implies the first half (b). For the second
half, use the identity

xdz = x(dx +idy) = dy — idx = —idz

Finally, note that the harmoncity condition is invariant under conjugation, so
the (c) follows from (b).
O

Proposition 1.6.6. H'(X,Ox) is isomorphic to the space of antiholomorphic
forms.

Proof. Let H C £%(X) denote the space of antiholomorphic forms. We will
show that -
7 H— &"(X)/imd

is an isomorphism. Suppose that o € £°1(X). By theorem 1.6.4, we may choose
a harmonic form 8 such that 8 = « + df + *dg for some f,g € C*°(X). Then
the (0,1) part of 3 gives an element 3’ € H such that 8’ = a + 9(f + ig). This
shows that 7 is surjective.

Suppose that « € kerw. Then o = df for some f. Therefore a + & = df.
Consequently a+ @ is exact and harmonic, so a4+& = 0. This impliesa = 0. O

Corollary 1.6.7. a — & gives a conjugate linear isomorphism
HY(X,Q%) = H'Y(X,0x)
Proof of theorem 1.5.4. We have a linear map
o: H(X,0%) — H' (X, 0x)*

which assigns to a the functional (o, —). If « € H°(X, QL) is nonzero then

a(a)(d):/Xa/\d;éO

Therefore ¢ is injective. Since these spaces have the same dimension, ¢ is an
isomorphism. O

The general Serre duality can also be proved by a similar method.

15



1.7 Riemann-Roch
Let h'(£) = dim H(X, L), and x(L£) = h°(L) — h'(L).

Theorem 1.7.1 (Riemann-Roch). If X is compact curve of genus g, and D is
a divisor
X(Ox (D)) =degD+1—g

Proof. Let D = Y n;p;. We prove this by induction on the “mass” M (D) =
> |ni| . When M (D) = 0, then this is just the equality

X(Ox)=1-yg

We follows from the facts h°(Ox) = 1,h!(Ox) = g established earlier.
Given p, we have an exact sequence

0—=Ox(—p) - 0x—>C,—=0
Tensoring by Ox (D) gives
0—Ox(D—-p) —O0x(D)—-C,—0

Observe that H°(X,C,) = C by definition and H'(X,C,) = 0 because C,, is
flasque. Thus

X(Ox(D)) = x(Ox(D - p)) + x(Cp) = x(Ox(D —p)) +1

Therefore
x(O(D)) —deg D = x(O(D — p)) — deg(D — p)

or by changing variable and writing the formula backwards
X(O(D)) — deg D = x(O(D + p)) — deg(D + p)

Since we can choose p so that M (D £ p) < M (D). One of these two formulas
shows that x(Ox (D)) equals 1 — g.
O

Using Serre duality, we get the more classical form of Riemann-Roch
Corollary 1.7.2. Let K be a canonical divisor, then
Y (O(D)) — h°(O(K — D)) =degD +1—g
In particular
h°(O(D)) >degD +1—g (Riemann’s inequality)

The Riemann-Roch theorem is a fundamental tool in the study of curves.
One consequence is that any compact complex curve carries a nonconstant mero-
morphic function. From this, it is not difficult to deduce the following important
fact:
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Theorem 1.7.3. Every compact Riemann surface is a monsingular projective
algebraic curve.

So from here on, we won’t make a distinction between these notions. We
also make use of GAGA (Serre, Géometrie algébrique et géometrie analytique)
to switch between algebraic and analytic viewpoints whenever convenient.

Theorem 1.7.4 (Chow’s theorem/GAGA).
(a) Meromorphic functions on a projective varieties are rational
(b) Holomorphic maps between projective varieties are reqular.
(¢) Submanifolds of nonsingular projective varieties are subvarieties.

(d) Holomorphic vector bundles on projective varieties are algebraic, and their
cohomology groups can be computed algebraically i.e. as the cohomology
of the corresponding sheaves on the Zariski topology

As an easy application of Riemann-Roch, let us classify curves of genus < 2,
where by curve we mean a nonsingular projective curve below.

Lemma 1.7.5. The only curves of genus 0 is IP’}C.

Proof. Let X be a curve of genus 0. Let p € X. By Riemann-Roch h°(O(p)) >
2. This implies that there exists a nonconstant meromorphic function f having a
pole of order 1 at p and no other singularities. Viewing f as a holomorphic map
X — P!, we have f~!(c0) = p and the ramification index e, = 1. This means
that the degree of f is 1, and one can see that this must be an isomorphism. [

From the proof, we obtain the following useful fact.
Corollary 1.7.6. If for some p, h°(O(p)) > 1, then X = PL.

We saw earlier that if f(z) is a degree 4, polynomial then y? = f has genus
1. Such a curve is called elliptic.

Lemma 1.7.7. Conversely, any genus 1 curve can be realized as degree 2 cover
of P! branched at 4 points.

Proof. Let X be a curve of genus 1. Let p € X. By Riemann-Roch h°(O(np)) >
n for n > 0. Thus we can find a nonconstant function f € H°(O(2p)). Either
f has a pole of order 1 or order 2 at p. The first case is ruled out by the
last corollary, so we are in the second case. Viewing f as a holomorphic map
X — P!, we have f~'(c0) = p with e, = 2. Therefore f has degree 2. Now
apply the Riemann-Hurwitz formula to conclude that f has 4 branch points. [

Lemma 1.7.8. Any genus 2 curve can be realized as degree 2 cover of P!
branched at 6 points.
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Proof. Either using Riemann-Roch or directly from corollary 1.5.5, we can see
that h?(Q%) = 2. Choose two linearly independent holomorphic 1-forms w;. The
ratio f = we/wy is a nonconstant meromorphic function. Since degdiv(wg) =
2(2)—2 = 2, f has most two poles counted with multiplicity. Therefore f : X —
P! has degree at most 2, and as above we can see that it is exactly 2. Again
using the Riemann-Hurwtiz formula shows that f has 6 branch points. O

1.8 Genus 3 curves

Continuing the analysis, we come to genus 3 curves. Here things become more
complicated. Some of these curves are hyperelliptic, but not all.

Theorem 1.8.1. A genus 3 curve is either a hyperelliptic curve branched at 8
points or a nonsingular quartic in P2. These two cases are mutually exclusive.

Fix a genus 3 curve X. Then hO(Q}() = 3. We can choose a basis wg, w1, ws.

Lemma 1.8.2. For everyp € X, one of the w;(p) # 0. (This condition says that
QL is generated by global sections, or in classical language that the canonical
linear system is based point free.)

Proof. Suppose that all w;(p) = 0 for some p. Then w; would define sections of
QL% (=p). So we must have h°(Q% (—p)) > 3. But by Riemann-Roch

R(Q(=p)) —h°(O(p)) =2(3) -2 -1+ (1-3) =1
Since h%(O(p)) = 1, we obtain h°(Q!(—p)) = 2. This is a contradiction. O

Choosing a local coordinate z, we can write w; = f;(z)dz. By the previous
lemma, the point [fo(2), f1(2), f2(2)] € P% is defined at all points of the coordi-
nate chart. If we change coordinates to (, then w; = uf;d(, where u = Z—Z. This
means that the point [fo(2), f1(2), f2(2)] € P% is globally well defined. In this
way, we get a nonconstant holomorphic map

ki X — P2

called the canonical map. The image is a curve in P2, which we denote by Y.
We can factor k as 7 : X — Y followed by the inclusion Y C P2. Let d; be
the degree of 7. Let x; denote the homogenous coordinates of P2. Consider the
line £ C P? defined by agzg + a121 + axz2 = 0. If we assume that a; are chosen
generically, then £ NY is a union, of say dy = degY “distinct points” (more
precisely, the scheme theoretic intersection is a reduced subscheme of length ds).
If we pull this back to X we get dids points which coincides with the zero set
of > a,w;. The degree of a canonical divisor is 4. Thus we get three cases:

(1) degY =4 and 7 has degree 1,
(2) degY =2 and 7 has degree 2,
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(3) degY =1 and 7 has degree 4.

In fact, case (3) is impossible because it would imply a linear dependence
between the w;. In case (2), Y is an irreducible conic, which is necessarily
isomorphic to P!. So this is the hyperelliptic case. Using Hartshorne, chap IV,
prop 5.3, we see that conversely a hyperelliptic genus 3 curve necessarily falls
into case (2). By Riemann-Hurwitz this must be branched at 8 points.

To complete the analysis, let us take closer look at case (1). Here 7 is
birational. So X is necessarily the normalization of Y.

Lemma 1.8.3. Y is nonsingular. Therefore X —'Y is an isomorphism.

Proof. Suppose that Y is singular. Consider the sequence
0—-0y »>m,.0x -C—0

where the cokernel C' is a sum of sky scraper sheaves

Pl P 0x4)/0vp

P gen—1(p)

supported a the singular points of Y. Let J, denote the dimension of each
summand above. At least one of these numbers is positive because Y is singu-
lar. C is flasque, therefore H(Y,C) = 0. Also since 7 is finite, H'(X,Ox) =
HY (Y, m.Ox) (c.f. Hartshorne, Algebraic Geometry, chap III ex 4.1). Conse-
quently

X(0x) = x(Oy) + 6y
and therefore
x(0x) > x(Oy)
The arithmetic genus p, of Y is defined so x(Oy) = 1 — p,. The inequality
says that p, is strictly less that the genus of X. It is worth pointing that the

argument is completely general; it applies to any singular curve. To obtain a
contradiction, we show that p, = 3. This will follow from the next result. [

Theorem 1.8.4. If C C P? is a curve of degree d, then the arithmetic genus
(= the ordinary genus when C' is nonsingular)

(d—=1)(d-2)
a = 2
Before starting the proof, we summarize some basic facts about projective
space. Proofs of these statements can be found in Hartshorne. Let xg,...,z,

be homogeneous coordinates of P¢. We have an open cover consisting of U; =
{z; # 0}. U; = A" with coordinates £o,..., 2 . 2= Let Opn(d) be the

' )
Zi

d
line bundle determined by the cocycle (E) . Suppose that d > 0. Given a

homogeneous degree d polynomial f(xq,...,x,), the transformation rule

d
Zo T e Zo Tp
f o ) =\ T f Ty T
T; T Zj x; T;
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shows that it determines a section of H?(P", Opn(d)). In fact, all sections are
of this form. Therefore

1O (Opn (d)) = (”+d>, d>0

n

All the other cohomology groups are zero. We also have a duality
R (Opn(—d)) = h" " (Opn(—n — 1 + d))

Therefore do 1) d—2
X(Os(~)) = H2(0(~)) = (L= E=2) (15

Under the this identification
HO(P", Opn(d)) = Hom(Opn, Opn (d))
a nonzero polynomial f determines an injective morphism Opn — Opn(d). Ten-

soring with Opn (—d) yields an injective morphism Opn (—d) — Opn. The image
can be identified with the ideal sheaf generated by f.

Proof of theorem. We have an exact sequence
0— OPQ(—d) — Opz — OC —0

Therefore
X(Oc) = x(Op2) — x(Op2(—d))
(d—1)(d-2)

=1-
2

All of these results taken together implies theorem 1.8.1.

1.9 Automorphic forms

We give one more application of the Riemann-Roch. The group SLs(R) acts
on the upper half plane H = {z € C | Imz > 0} by fractional linear trans-
formations. Suppose that I' C SL2(R) is a discrete subgroup which acts freely
on H (or more precisely suppose that I'/{£T} acts freely). Then the quotient
X = H/T is naturally a Riemann surface. Let us assume that X is compact.
The genus g can be shown to be at least two by the Gauss-Bonnet theorem. An
automorphic form of weight 2k is a holomorphic function f(z) on H satisfying

1) = (2 + d) 2y (“’)

cz+d
a b
(C d) er

When f(z) has weight 2, f(z)dz is invariant under the group. Therefore it
defines a holomorphic form on X. It follows that

for each
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Proposition 1.9.1. The dimension of the space of weight two automorphic
forms is g.

If f(2) has weight 2k, then f(z)dz®* defines a section of (2% )®* = Ox (kK).
From Riemann-Roch

h(O(kK)) = h°(O((1 - k)K)) = deg(kK) + (1 — g) = (2k = 1)(g — 1)
If £ > 1, then deg(1 — k) K < 0. Therefore:

Proposition 1.9.2. Ifk > 1, the dimension of the space of weight 2k automor-
phic forms is (g — 1)(2k — 1).
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