
Chapter 1

Manifolds

1.1 Topological Manifolds

In imprecise terms, a manifold is a space which looks locally like Euclidean
space. Actually there several kinds. Let’s start with the most basic.

Definition 1.1.1. A topological manifold of dimension n (or n-manifold) is a
metrizable topological space such point has a nbhd U homeomorphic to an open
ball of Rn. We refer to U as a coordinate nbhd, and U with a fixed homeomor-
phism � : U ! V ⇢ RN as a chart.

Recall that metrizable means that it comes from a metric. The condition
ensures that the underlying space is su�ciently nice, but it can be omitted at
this point. Note that any connected component of a manifold is also a manifold,
so we usually just study the connected ones. And if I forget to say “connected
manifold” , you should assume that’s what I meant.

Example 1.1.2. Any open subset of Rn is clearly an n-manifold.

Example 1.1.3. The n-sphere Sn = {(x1, . . . , xn) | x2
1 + . . . + x2

n = 1} is
manifold. Given p = (1, 0, . . . 0), the hemisphere Sn

\ {x1 > 0} is a coordinate
nbhd, with � given by stereographic projection.

Example 1.1.4. If X and Y are manifolds of dimension n and m, then X⇥Y is
manifold of dimension n+m. In particular, the torus Tn = S1

⇥. . . S1 (n times)
is an n-manifold.

Example 1.1.5. The cone defined by z2 = x2 + y2 in R3 is not a manifold.
Why not?

The next example is really important in algebraic geometry. So we study it
in some detail.

Example 1.1.6. Complex projective space CPn = Pn
C is the set of complex lines

through the origin (= one dimensional complex subspaces) in Cn+1. Alterna-
tively, let t 2 C⇤ act on Cn+1 by multiplications. Then Pn

C = (Cn+1
� {0})/C⇤.
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We give Pn
C the quotient topology, i.e. U is open i↵ it’s preimage Cn+1

� {0} is
open.

Lemma 1.1.7. Pn
C is a manifold of dimension 2n (NB: algebraic geometers

generally use complex dimension, which would be n.)

Proof. Given p = (z0, . . . , zn) 2 Cn+1
� {0}, let [p] denote the corresponding

point in projective space. The variables zi are called homogenous coordinates.
Let Ui = {[z0, . . . , zn] | zi 6= 0}. This forms an open cover. The map

[z0, . . . , zn] 7! (z1/z0, . . . zn/z0)

defines a homeomorphism U0
⇠= Cn. A similar construction applies to all Ui.

The manifold Pn
C is compact (why?). By the above proof it is a compact-

ification of Cn. If one wants to compactify Cn to a complex manifold (to be
defined later). Then this is a simplest way to do it.

Finally, we describe a few more examples constructed by ”cut and paste”.

Example 1.1.8. If one glues the ends of [0, 1] ⇥ R by identifying (0, x) with
(1, x), one gets S1

⇥ R. However, identifying (0, x) with (1,�x) results in the
Moebius strip.

Example 1.1.9. Take two copies of T 2, say T1, T2. Choose open coordinate
disks Di ⇢ Ti. Note that boundaries @D̄i are circles. Glue T1 �D1 to T2 �D2

along the circles @D̄i. This construction is called a connected sum, and denoted
by T 2#T 2. This forms a new 2-manifold called a genus 2 surface. It can be
visualized by drawing a 2 holed donut. This can be repeated several times. The
manifold T 2#T 2# . . . T 2 (g times) is a called a genus g surface.

1.2 C1-manifolds

It is possible to do calculus on manifolds, but first we have to refine the defini-
tion.

Definition 1.2.1. A C1 manifold of dimension n is a topological manifold X
equipped with a collection of charts (called an atlas) �i : Ui ! Vi ⇢ Rn such
that �i � �

�1
j are C1, and of course X =

S
Ui.

If we write �i(p) = (x1(p), . . . , xn(p)). The functions x1, . . . are called local
coordinates. We are requiring that new coordinates can be expressed as C1

functions of old coordinates, and visa versa. We say that two atlases are equiv-
alent if their union is an atlas. Then to be a bit more pedantic, a C1 manifold
is given by an equivalence class of atlases. (Alternatively, some authors will tell
you pick the maximal one by Zorn’s lemma.)

Example 1.2.2. Open subsets of Rn, Sn, Tn and Pn
C are all C1 manifolds.
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For the last item, note that homogenous coordinates are not coordinates in
the sense of the previous paragraph, but the ratios z0/zi, z2/zi . . . on Ui are.
On Ui \ Uj , we have two systems of coordinates zk/zi and zk/zj related by
multiplying by zi/zj or its inverse.

The Moebius strip and the last example above T 2# . . . can also be made
into C1 manifold if the gluing is done with care. For the rest of this section
manifold means C1 manifold.

We can produce many examples, with the help of the implicit function the-
orem from calculus. In the simplest form it says that if f : Rn+1

! R is C1

such that f(0) = 0 and @f
@xn+1

(0) 6= 0, and if

f(x1, . . . , xn+1) = 0

then we can “solve for” xn+1 in terms of the previous variables, at least near
the origin. Here is a more precise and stronger statement.

Theorem 1.2.3. Suppose that 0 2 U ✓ Rn+m is open, and f : U ! Rm is
a C1 function such that f(0) = 0 and ( @fi

@xn+i
(0))i=1,...m is invertible. Then

f�1(0) is the graph of another C1 function g near the origin. More precisely,
there exists open sets 0 2 V ✓ Rn, 0 2 W ✓ Rm and C1 g : V ! W such that
V ⇥W ⇢ U , and

8(p, q) 2 V ⇥W, f(p, q) = 0 , q = g(p)

Corollary 1.2.4. Suppose that f : U ! Rm is C1 such that X = f�1(0) 6= ;

and the Jacobian (@fi/@xn+i) is invertible along all points of X Then X has
the structure of C1 n-manifold.

Sketch. Suppose p1 2 X, which for simplicity we assume is 0. Then the implicit
function theorem produces V,W, g as above. Set U1 = (V ⇥W ) \X. Then the
projection �1 : U1 ! V = V1 is a homeomorphism, because the inverse is given
by p 7! (p, g(p)). This gives a chart at p1. One can check that for any other
choice p2, . . . ,�2, the transition function �2 � �

�1
1 is C1.

Definition 1.2.5. A map f : X ! Y between manifolds is C1 if

1. f is continuous

2.  j � f � ��1
i is C1 for any charts �i : Ui ! Vi ⇢ Rn and  j : U 0

j ! V 0
j ⇢

Rm.

The last condition says that f is C1 when expressed in local coordinates.
Using standard facts from calculus.

Theorem 1.2.6. The composition of two C1.

It follows that manifolds and C1 maps constitute a category. An isomor-
phism in this category is called a di↵eomorphism. To be more explicit:

Definition 1.2.7. A di↵eomorphism between manifolds is a C1 bijection such
that the inverse is also C1. Two manifolds are called di↵eomorphic if a di↵eo-
morphism exists between them.
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1.3 Riemann surfaces

We will postpone the discussion of definition of general complex manifolds, and
focus on the important special case of Riemann surfaces (= complex curves) for
now.

Definition 1.3.1. A Riemann surface is a topological manifold X equipped with
an altas �i : Ui ! Vi ⇢ C, such that �i � �

�1
j is holomorphic.

By definition, a Riemann has complex local coordinate z in every chart.
Coordinate changes are required to be holomorphic. A Riemann surface can be
viewed as the C1 2-manifold, with (real) coordinates x = Re z, y = Imz.

Example 1.3.2. Any open subset of C is a Riemann surface.

The next example is covered in a standard complex analysis class. It is the
simplest example of Riemann surface which is not a subset of C.

Example 1.3.3. The Riemann sphere is S2 = C[ {1} has two charts U0 = C
with the identity �0 : C ! C or standard coordinate z, and U1 = C� {0}[ {1}

with coordinate ⇣ = 1/z. Alternatively, the sphere can be described as P1
C, where

z = z1/z0, and ⇣ = z1/z0 in homogeneous coordinates.

Example 1.3.4. Given two R-linearly independent complex numbers a, b 2 C,
let L = Za�Zb be the lattice generated by them. Let E = C/L with a projection
⇡ : C ! E. If D is a disk of radius r < min(|a + b|, |a � b|)/2 (so that D lies
in a period parallegram), ⇡ will map D homeomorphically to its image ⇡(D).

We take ⇡(D)
⇡�1

��! D to be a chart. In this way E becomes a Riemann surface
called an elliptic curve. As a C1 manifold, E = T 2, and any two 2-tori are
di↵eomorphic. However, its structure as a Riemann surface depends in a subtle
way on a, b.

We will discuss many other examples later on. But let us consider a nonex-
ample. As noted already, a Riemann surface is a C1 2-manifold. The converse
is not true however. For example, a Moebius strip cannot be turned into a
Riemann surface. The reason is that the strip is not orientable. Informally, a
surface in R3 is orientable if there is a nowhere nonzero normal vector field on
it. With a little calculus, we can turn this into a better definition.

Definition 1.3.5. A C1 2-manifold is orientable if the Jacobian determinants
of the coordinate changes

det

✓
@x0/@x @x0/@y
@y0/@x @y0/@y

◆

are either all strictly positive or strictly negative.

Theorem 1.3.6. A Riemann surface is orientable.
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Proof. Let z = x + iy, w = u + iv be holomorphic coordinates. The Cauchy-
Riemann equations imply that

det

✓
ux uy

vx vy

◆
= det

✓
ux �vx
vx ux

◆
= u2

x + v2x > 0

(In case, you forget what the Cauchy-Riemann says, remember that it means
that the derivative is C-linear, or equivalently that the Jacobian matrix com-

mutes with

✓
0 1
�1 0

◆
.)

We can give another “proof” using the informal definition. It has the ad-
vantage of being calculation free. Suppose a surface X ⇢ R3 was a Riemann
surface. Choose a unit tangent vector v at p 2 X. Since the tangent plane can
be identified with C, we can multiply by i to get new tangent vector u. The
cross product v⇥ u gives a preferred unit normal. Note that the argument tells
us that Riemann surfaces are not just orientable, but naturally oriented.

1.4 Complex manifolds

We start a few more remarks about holomorphic functions in one variable. Let
us write

z = x+ iy

as usual, and introduce complex valued di↵erential forms

dz = dx+ idy, dz̄ = dx� idy

(If you aren’t sure what di↵erential forms are, you can just be view them as
formal expressions for now.) Therefore

dx =
1

2
(dz + dz̄)

dy =
1

2i
(dz � dz̄)

Given a C1 function f : U ! C, the total di↵erential

df = fxdx+ fydy =
1

2
(fx � ify)dz +

1

2
(fx + ify)dz̄

We introduce operators

@f =
1

2
(fx � ify)dz

@̄f =
1

2
(fx + ify)dz̄

so that
d = @ + @̄
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If we set u = Re f, v = Imf , then

@̄f =
1

2
[(ux � vy) + i(uy + vx)]dz̄

This makes it clear that the condition @̄f = 0 is precisely the Cauchy-Riemann
equations. Therefore

Lemma 1.4.1. f is holomorphic i↵ @̄f = 0.

Let us now go to several variables.

Definition 1.4.2. Let U ✓ Cn be open. A function f : U ! C is holomorphic
if it is C1 (or just C1) and holomorphic in each variable, i.e. when all but one
variable is fixed, f(z1, . . . , zn) is holomorphic in the remaining variable.

We define the Cauchy-Riemann operator in several variables by

@̄f =
nX

j=0

1

2
(fxj + ifyj )dz̄j

Theorem 1.4.3. Given a C1 function f : U ! C, the following are equivalent:

1. f is holomorphic.

2. @̄f = 0

3. f is analytic: Writing z = (z1, . . . , zn), then for each p 2 U , there exists
an expansion

f(z + p) =
X

j1,...,jn�0

aj1...jnz
j1
1 . . . zjnn

which converges uniformly in a nbhd of 0.

We just give the briefest sketch. See Voisin or other references for more. The
equivalence of 1 and 2 should be clear from what we said above. Also 3 ) 1
is clear. Let’s consider the converse when p = 0. This requires a version of
Cauchy’s formula in several variables, which can be proved by induction:

f(z) =
1

(2⇡i)n

Z

|⇣1|=r1

. . .

Z

|⇣n|=rn

f(⇣)Q
(⇣j � zj)

d⇣1 ^ . . . d⇣n

(ignore the ^ if you aren’t sure what it means). The integrand can be expanded
into a product of geometric series. Since this is uniformly convergent for small
|z|, we can integrate term by term to obtain a power series expansion for f(z).

We record another consequence of Cauchy’s formula, which should be famil-
iar from one variable.

Theorem 1.4.4 (Maximum principle). If f holomorphic function on a closed
polydisk (= product of disks), then either |f(z)| takes a maximum on the bound-
ary or f is constant.
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In addition to analogues of results from one complex variable, there are also
some new phenomena:

Theorem 1.4.5 (Hartogs theorem). Suppose that n > 1 and that p 2 U ✓ Cn

is open. A holomorphic function on U � {p} extends to U .

A proof, along with stronger versions, can be found in any book on several
complex variables. We are now ready to give the definition.

Definition 1.4.6. A complex manifold of dimension n is topological manifold
X equipped with charts �i : Ui ! V ⇤

i ⇢ Cn such that �i ��
�1
j is holomorphic in

the above sense.

Note n above is the complex dimension. The real dimension would be 2n.
The axioms say about each point, we can find holomorphic (or analytic) coordi-
nates z1, . . . , zn. The real and imaginary parts x1 = Re z1, y1 = Imz1, . . . give
2n coordinates as the C1 manifold.

We already have many examples, such Riemann surfaces (where the complex
dim =1), products of Riemann surfaces, and Pn

C. Here are a few examples, which
come from algebraic geometry.

Example 1.4.7. Let f(z1, . . . , zn) be a holomorphic function, e.g. a polynomial,
such that the gradient (@f/@z1, . . . , @f/@zn) is nonzero along X = f�1(0) ⇢ Cn.
Then X is a complex manifold of dimension n�1 called a nonsingular (algebraic
or analytic) hypersurface of Cn. This requires the holomorphic version of the
implicit function theorem. We will say more about that later.

Before explaining the projective analogue, note that a polynomial f 2 C[z0, . . . , zn]
in the homogenous coordinates does not define a function on Pn

C. However, if f
is homogenous, then its zero set

V (f) = {[a] | f(a) = 0}

is well defined, because f(a) = 0 ) f(b) = 0 for all b 2 [a]. Also

f(z0/zi, . . . , 1, . . . zn/zn) 2 C[z/z0, . . . , zn/z0]

gives a well defined non homogeneous polynomial in the true coordinates of Ui.
The zero set of the latter, can be indentified with V (f) \ Ui. Similar remarks
apply to a set of homogenous polynomials.

Example 1.4.8. Suppose that f 2 C[z0, . . . , zn] is a homogenous polynomial of
degree d, such that the intersection of

X = V (f)

with any Ui is a nonsingular hypersurface in Cn, then X is a complex manifold
in Pn

C. It is called a (projective algebraic) hypersurface of degree d.
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In the last two examples, when X is zero set of a polynomial in C2 or P2
C, it

is called a nonsingular a�ne or projective algebraic plane curve. A degree one
curve is isomorphic in an obvious to P1. The same is true when the degree is
2, but this is less obvious. For degree 3, we get something di↵erent, namely an
elliptic curve. The proof uses the theory of elliptic functions.

In spite of the similarities between C1 manifolds and complex manifolds,
there are also big di↵erences. These stem from the fact that C1 functions are
very flexible, while holomorphic functions are somewhat rigid. The following
function on Rn

f(x1, . . . , xn) = g(x1) . . . g(xn)

g(x) =

(
e1/(x�1)2e1/(x+1)2 if x 2 [�1, 1]

0 otherwise

is supported on the cube [�1, 1]n. Viewing this as a function on a coordinate
nbhd, and then extending by zero, shiows that any C1 manifold has many
nonconstant global C1 functions. By contrast:

Theorem 1.4.9. A holomorphic function on a connected compact complex man-
ifold is constant.

Proof. Let f(z) be a holomorphic function on a compact manifold X. By com-
pactness, |f(z)| takes a maximum value at a point p0. Then S = {p 2 X |

f(p) = f(p0)} is closed and nonempty. Given p 2 S, and let U be coordinate
nbhd of p equivalent to a polydisk. Then f |U is constant by the maximum
principle. Therefore S is also open. Consequently X = S by connectedness.
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