Chapter 2

Sheaves of functions

2.1 Sheaves

It is convenient at this point to introduce the language of sheaves, although in
the limited way. We say that such a collection of functions is a presheaf if it is
closed under restriction. Given sets X and T, let Mapr(X) denote the set of
maps from X to T. Here is the precise definition of a presheaf.

Definition 2.1.1. Suppose that X is a topological space and T a nonempty
set. A presheaf of T-valued functions on X is a collection of subsets P(U) C
Mapr(U), for each nonempty open U C X, such that the restriction fly € P(V)
whenever f € P(U) and V C U.

The collection of all functions Mapr(U) is of course a presheaf. Less trivially:

Example 2.1.2. Let T be a topological space, then the set of continuous func-
tions Cx r(U) from U C X to T is a presheaf.

Example 2.1.3. Let X be a topological space and T be a set. The set TP"¢(U)
of constant functions from U to T is a presheaf called the constant presheaf.

Upon comparing these two examples, we see an essential difference. Continu-
ity is a local condition, which means that it can be checked in a neighbourhood
of a point. Constancy is, however, not local. A presheaf is called a sheaf if the
defining condition is local as in the first example. More precisely:

Definition 2.1.4. A presheaf of functions P is called a sheaf if given any open
set U with an open cover {U;}, a function f on U lies in P(U) if flu, € P(U;)
for all .

The first example Cx 7 (U) is certainly a sheaf, while the second is not in
general. Suppose that T has at least two elements ¢1,t2, and that X contains
a disconnected open set U. Then we can write U = U; U Us as a union of two
disjoint open sets. The function 7 taking the value of ¢; on U; is not in T?P7¢(U),
but 7|y, € TP"¢(U;). Therefore TP"¢ is not sheaf.

However, there is a simple remedy.




Example 2.1.5. A function is locally constant if it is constant in a neigh-
bourhood of a point. For instance, the function T constructed above is locally
constant but not constant. The set of locally constant functions, denoted by
T(U) or Tx(U), is a now sheaf, precisely because the condition can be checked
locally. A sheaf of this form is called a constant sheaf.

There are a number of further examples that will come up frequently.

Example 2.1.6. Let X = R"™ or a C* manifold, the sets C°(U) of C* real
valued functions form a sheaf.

Example 2.1.7. Let X = C" or a complex manifold, the sets O(U) of holo-
morphic functions on U form a sheaf.

Example 2.1.8. Let L be a linear differential operator on R™ with C*° coef-
ficients (e. g. >.98%/0z2). Let S(U) denote the space of C* solutions in U.
This is a sheaf.

Example 2.1.9. Let X = R", the sets L*(U) of L* or summable functions
forms a presheaf which is not a sheaf, because summability is a global condition
and not a local one.

We can always create a sheaf from a presheaf by the following construction.

Example 2.1.10. Given a presheaf P of functions from X to T. Define the
PU)={f:U— T |Vx U3 a neighbourhood U, of xz, such that f|y, € P(U)}
This is a sheaf called the sheafification of P.

When P is a presheaf of constant functions, P? is exactly the sheaf of locally
constant functions. When this construction is applied to the presheaf L!, we
obtain the sheaf of locally L' functions.

2.2 Manifolds again

We can now reinterpret the notion of a C*° or complex manifold. We start with
a metrizable space X and a sheaf of C*° or holomorphic functions. We require
that each point has a nbhd homeomorphic to a ball in R™ or C™ so that the
homeomorphism preserves this special class of functions. To be more precise, let
us fix a field &k such as k = R or C. Then Mapy(X) is a commutative k-algebra
with pointwise addition and multplication.

Definition 2.2.1. Let R be a sheaf of k-valued functions on X. We say that
R is a sheaf of algebras if each R(U) C Mapy(U) is a subalgebra. Call the
pair (X, R) a concrete ringed space over k simply a k-space. We will sometimes
refer to elements of R(U) as distinguished functions.

The sheaf R is called the structure sheaf of X. Basic examples of R-spaces
are (R", Cgn r), (R*,C*), and (C", O) is an example of a C-space.
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Definition 2.2.2. A morphism of k-spaces (X,R) — (Y,S) is a continuous
map F : X — Y such that the pullback of distinguished functions are distin-
guished. More precisely, the condition is that if f € S(U) then F*f € R(F~1U),
where F*f = fo F|p-1y.

For example, a C* map F : R® — R™ induces a morphism (R", C*) —
(R™, C*°) of R-spaces, and a holomorphic map F' : C* — C™ induces a mor-
phism of C-spaces. The converse is also true, and will be left for the exercises.

We note that the collection of k-spaces and morphisms forms a category.
In any category, we have a notion of isomorphism. We will spell this out for
k-spaces.

Definition 2.2.3. An isomorphism of k-spaces (X, R) = (Y,S) is a homeo-
morphism F : X —Y such that f € S(U) if and only if F*f € R(F~'U).

Given a sheaf S on X and open set U C X, let S|y denote the sheaf on
U defined by V +— S(V) for each V' C U. The following gives an alternative
approach to manifolds.

Proposition 2.2.4. An n-dimensional C*° manifold (resp. complex manifold)
is the same thing as an R-space (X,C¥) (resp. C-space (X,Ox)) such that

1. X s metrizable

2. X admits an open cover {U,;} such that each (U;, C¥|u,) is isomorphic to
(Bi,C%) for open balls B; C R™ (resp. ... isomorphic to (B;,Op,) for
balls in B; C C™).

A C (resp. holomorphic) map between manifolds is the same thing as a mor-
phism of the corresponding R-spaces. (resp. C-spaces).

We omit the proof which is not hard. We give one further example of a
complex manifold with the help of this characterization.

Example 2.2.5. The complex Grassmanian G = Gr(2,n) is the set of 2 dimen-
sional subspaces of C". Let M C C?" be the open set of 2 x n matrices of rank
2. Let m: M — G be the surjective map which sends a matriz to the span of its
rows. Give G the quotient topology induced from M, and define f € Og(U) if
and only if mo f € Op(n=U). For i # j, let Ujj C M be the set of matrices
with (1,0)" and (0,1)" for the ith and jth columns. One can check that

C2n74 = U,'j = W(Ulj)

as ringed spaces. Since the images w(U;;) cover G, we conclude that G is a
2n — 4 dimensional complex manifold.

We note that the sheaf theory approach to manifolds is not commonly dis-
cussed in most references, but it has some advantages in algebraic or complex
geometry where we consider more general kinds of spaces.
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Example 2.2.6. Let f € Clz1,...,2,] be a nonconstant polynomial, and let
X = f710). Since we didn’t impose a condition on the gradient, X need not
be a topological manifold. However, we can still introduce a sheaf of holomor-
phic functions, where Ox (U) consists of restrictions of holomorphic functions
from an open subset of C™ containing U. (This is more accurately the sheaf of
holomorphic functions on the reduced space corresponding to X .)

2.3 Stalks

Given two functions defined in possibly different neighbourhoods of a point
x € X, we say they have the same germ at x if their restrictions to some
common neighbourhood agree. This is is an equivalence relation. The germ
at = of a function f defined near X is the equivalence class containing f. We
denote this by f,.

Definition 2.3.1. Given a presheaf of functions P, its stalk P, at x is the set
of germs of functions contained in some P(U) with x € U.

It will be useful to give a more abstract characterization of the stalk using
direct limits (which are also called inductive limits, or filtered colimits). We
explain direct limits in the present context. Suppose that a set L is equipped
with a family of maps P(U) — L, where U ranges over open neighbourhoods
of x. We will say that the family is a compatible family if P(U) — L factors
through P(V'), whenever V' C U. The maps P(U) — P, given by f — f,
forms a compatible family. A set L equipped with a compatible family of maps
is called a direct limit of P(U) if and only if for any M with a compatible
family P(U) — M, there is a unique map L — M making the obvious diagrams
commute. This property characterizes L up to isomorphism, so we may speak
of the direct limit

limg P(U).

zeU

Lemma 2.3.2. P, = ligzeUP(U).

Proof. Suppose that ¢ : P(U) — M is a compatible family. Then ¢(f) = ¢(f|v)
whenever f € P(U) and z € V C U. Therefore ¢(f) depends only on the germ
fz- Thus ¢ induces a map P, — M as required. O

All the examples of k-spaces encountered so far satisfy the following addi-
tional property.

Definition 2.3.3. We will say that a concrete k-space (X, R) is locally ringed
if 1/f € R(U) when f € R(U) is nowhere zero.

Recall that a ring R is local if it has a unique maximal ideal, say m. The
quotient R/m is called the residue field.
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Lemma 2.3.4. Suppose that k = R or C, and (X,R) is a ringed space, such
that R(U) consists of continuous functions and 1/f € R(U) when f € R(U)
is nowhere zero. Then for any x € X Ry is a local ring with residue field
isomorphic to k. In particular, this applies to C* and complex manifolds.

Proof. Let m, be the set of germs of functions vanishing at x. For R, to be
local with maximal ideal m,, it is necessary and sufficient that each f € R, \m,
is invertible. This is clear since 1/f|y € R(U) for some z € U.

To see that R,/m, = k, it is enough to observe that the ideal m, is the
kernel of the evaluation map ev : R, — k given by ev(f) = f(z), and the map
is surjective, because ev(a) = a when a € k. O

Proposition 2.3.5. When (X, Ox) is an n-dimensional complex manifold, the
local ring Ox 5 can be identified with ring of convergent power series in n vari-
ables.

Proof. We can replace (X,z) by (C",0). Then the germ of a holomorphic
function at 0 is completely determined by its Taylor series, which converges in
a nbhd of 0. O

We write
C{z1,...,2n} CClz1,...,24]

for the rings of convergent and formal power series in the above variables. Both
rings are local with maximal ideal m = (z1,...,2,). Also both rings are known
to be noetherian [see for example Zariski-Samuel Vol II], so standard results
from commutative algebra can be applied. By contrast, when X is a C°°-
manifold, the stalks are non-noetherian local rings. This is because N, m™
contains nonzero functions such as

e~V ifr >0
0 otherwise

when X = R, so it violates Krull’s theorem [Atiyah-Macdonald, pp 110-111].
Nevertheless, the maximal ideals are finitely generated.

Proposition 2.3.6. If R is the ring of germs at 0 of C*° functions on R™, then
its maximal ideal m is generated by the coordinate functions x1,...xy,.

Proof. One checks that if f € m, then

1
f= Zml/ gxf (tzy,...tx,)dt
i 0 i

O

If R is a local ring with maximal ideal m then k = R/m is a field called the
residue field. We will often convey all this by referring to the triple (R, m, k)
as a local ring. For stalks of C*° and complex manifolds, the residue fields are
respectively, R and C. We note the following properties hold in these cases.
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1. There is an inclusion & C R which gives a splitting of the natural map
R — k.

2. The ideal m is finitely generated.

2.4 Tangent spaces

The tangent space to a manifold at a point is the best linear approximation to
it. For a hypersurface X = f~1(0) C R™ with Vf|x # 0. We could use the
definition from calculus: the tangent space at p € X is

T, ={veR" |v-V(f)(p) =0}

But this depends on the embedding. It is better to use a more intrinsic approach.
The idea is that to each tangent vector v € T}, we can associate a directional
derivative d,, which operates on germs of functions at p. Since v — ¢, involves no
loss of information, we may as well identify them. Thus we arrive the following
abstract definition.

Definition 2.4.1. Let (R, m, k) be a local ring of a C* or complex manifold
X at a point p, or more generally a ring satisfying the conditions at the end
of the last section. Define the tangent space T, = Tr to be the set of k-linear
derivations Dery(R, k) i.e. linear maps 6 : R — k satisfying 6(fg) = f(p)dg +

g(p)if.

When (R,m, k) satisfies the above conditions, R/m? splits canonically as
k @ m/m?. The second factor m/m? is finite dimensional. Let us focus on
R = Cp° for now. The decomposition is given by f — (f(p), f — f(p)). Set
df = f—f(p). To get a better sense of what this means, expand f using Taylor’s

formula

of
flay,...,zn) = f(p) + E oz, p:lci +r(z1, ..., xy)
where the remainder r lies in m?. We thus
of
p— —_— 2-1
v=Y 5 (2.)

as the notation suggests.

Lemma 2.4.2. d : R — m/m? is a R-linear derivation. There is an isomor-
phism
T, = Hom(m/m?* R)

given by 6 = 6| /m2-

Proof. The first statement is clear from the formula (2.1). Given §' € Hom(m/m?, k),
let 6 = ¢’ o d. This lies in T}, and the map ¢’ — ¢ gives the inverse to the map
above. O
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Corollary 2.4.3. T = Ty = m/m? This is called the cotangent space for
obvious reasons.

Lemma 2.4.4. When (R, m, k) is the ring of germs at 0 of C> functions on
R™. Then a basis for Dery(R, k) is given

0

Bxi 0

i 1= 1, e

The lemma is straight forward using previous facts. A homomorphism F' :
S — R of local rings is called local if it takes the maximal ideal of S to the
maximal ideal of R. Under these conditions, we get map of cotangent spaces
TE — T4 called the codifferential of F'. When residue fields coincide, we can
dualize this to get a map dF : T — Tg called the derivative or differential. To
see the name is justified, suppose f: U — V is a C° map, where U C R™,V C
R™ are open. Given p € U, and ¢ = f(p), we get a homomorphism f*:S — R
between rings of germs of functions on V and U by f*g = g o f. The following
is straight forward.

Lemma 2.4.5. Using standard bases, df* is represented by the Jacobian matrix

ofr 9f1
oxq tCt Oz,
) w
Ofm Ofm
oxq CUt Oz,

where f; are the components of f.

Proof. Writing y; = fi(x1,...,2,). The chain rule gives

& ~—=0fi 0

O

Let X be a complex manifold with p € X, let Ox j, = O, be the ring of germs
of holomorphic functions, and let CY,, be the ring of germs of €™ functions.

Let us define the holomorphic tangent space as T, ;‘ =To,, and the real tangent
space T, = Toee. We have local homomorphism Ox,, — €%, which induces a

map T]? — T}, of real vector spaces. If z1, ..., 2, are local analytic coordinates,
the previous map is given by

9 ., 9
E)zj 833j
Usually, we identify
0 .0
0 = 200, "oy
So the map above is essentially the real part. From this description, we see that

) =T,

0 1

as R-vector spaces. This isomorphism imparts on 7}, the structure of a complex
vector space.
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2.5 Vector fields and the tangent bundle

Let X be a C° manifold. A C* vector field on X is R-linear derivation
Derg(C*(X),C>®(X)). Let Vect(X) denote the set of these. It is clearly an
abelian group. Given f € C*°(X) and D € Vect(X), fD = g+ f(x)D(g(x)) is
another vector field. This structure makes Vect(X) into a module over C*°(X).
The following is not hard.

Proposition 2.5.1. If U C X is a coordinate nbhd of X with coordinates
T1,...,Tn, then % gives a basis for Vect(U) as C*°(U)-module. In particular,

Vect(U) is a free module of rank n.

There is an alternative way to understand what a vector field is; it is simply
a “C* family” of vectors v, € T, for each p. The C'°° requirement can be
made precise by choosing coordinates as above. We describe a coordinate free
approach in the case of a hypersurface X = f~1(0) C R". Define the manifold

Tx = {(p,v) €R" x B" | Vf(p) -v = 0}

This has a projection 7 : Tx — X given by 7(p,v) = p. The space Tx together
with 7 is called the tangent bundle of X. The fibres are 7~ (p) = T}, (using the
calculus definition). Then a vector field is simply a C* map o : X — Tx such
that m o o = 1, because we want o(p) € T).

In general:

Theorem 2.5.2. Given a C* n-manifold X, there exists a 2n-manifold Tx
with a C*° map 7 : Tx — X such that

1. Each fibre 7=1(p) = T,

2. There exists an open cover {U;} and isomorphisms

U —==U; x R"

-

Ui
which are linear on the fibres.

3. Vect(X) is isomorphic to the set of C*° maps o : X — Tx (called sections)
such that moo = 1.

The data in item 2 is called a “local trivialization”. One can a choose
collection of charts for the cover {U;}. A detailed construction can be found in
any basic book on manifolds. Here we describe it when we have two charts U
and U with coordinates x; and a respectively. We extend these to coordinates

X1,...,T2, on Uy X R™ and zf,...,2h, on Uz x R". We want to think of
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Tpyi = 0/0x; ete. On the intersection Uy NUs we are given functions expressing

x, = ¢i(x1,...,xy,) and visa versa. Differentiating gives the transformation rule
0 0x; 0x;
/ J '
T ;= =— = —
nH T Ot Z o’ 8x] — 0a s

for the remaining coordinates. This allows us to glue U; x R™ to Uz x R™.

The tangent bundle is called trivial, or X is called parallelizable, if we can
take {U;} = {X}, i.e. there exists an isomorphism Tx = X x R™ as above.
In algebraic terms, this equivalent to Vect(X) to being a free module of rank
n. Most manifolds are not parallelizable. The simplest counter example is the
sphere S2.

Finally, let us return to sheaf viewpoint. Given C'*° n-manifold X, if we
view v € Vect(U) as a section U — Tx|y = Ty, we can restrict it to any
subset V' C U. It should be clear that the assignment Vectx : U — Vect(U)
forms a sheaf of abelian groups. In fact, restrictions are compatible with the
module structure in the following sense. Given f € C*°(U) and v € Vect(U),
foly = flvvlv. We say that U — Vect(U) is a sheaf of modules over the sheaf
C%. Finally, if U is a coordinate nbhd, proposition 2.5.1 implies that

Vectx|u & (Cf}o)n
A sheaf of modules with this property is locally free of rank n. In summary:

Proposition 2.5.3. Vectx is a locally free sheaf of modules over C of rank
n.

There is a parallel story in the holomorphic case.

Theorem 2.5.4. Given a complex n-manifold X, there exists a complex 2n-
manifold T% with a holomorphic map m: T% — X such that

1. Each fibre 7= (p) = T}

2. There exists an open cover {U;} and isomorphisms
U —=U; x C"
Ui
which are linear on the fibres.
3. As C°° manifolds T = Tx.

Thanks to 3, we will usually drop the h in the future. We can define a
holomorphic vector field as holomphic section o : X — Tx. We can form a
sheaf of holomorphic vector fields as above.
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