
Chapter 2

Sheaves of functions

2.1 Sheaves

It is convenient at this point to introduce the language of sheaves, although in
the limited way. We say that such a collection of functions is a presheaf if it is
closed under restriction. Given sets X and T , let MapT (X) denote the set of
maps from X to T . Here is the precise definition of a presheaf.

Definition 2.1.1. Suppose that X is a topological space and T a nonempty
set. A presheaf of T -valued functions on X is a collection of subsets P(U) ✓

MapT (U), for each nonempty open U ✓ X, such that the restriction f |V 2 P(V )
whenever f 2 P(U) and V ⇢ U .

The collection of all functionsMapT (U) is of course a presheaf. Less trivially:

Example 2.1.2. Let T be a topological space, then the set of continuous func-
tions CX,T (U) from U ✓ X to T is a presheaf.

Example 2.1.3. Let X be a topological space and T be a set. The set T pre(U)
of constant functions from U to T is a presheaf called the constant presheaf.

Upon comparing these two examples, we see an essential di↵erence. Continu-
ity is a local condition, which means that it can be checked in a neighbourhood
of a point. Constancy is, however, not local. A presheaf is called a sheaf if the
defining condition is local as in the first example. More precisely:

Definition 2.1.4. A presheaf of functions P is called a sheaf if given any open
set U with an open cover {Ui}, a function f on U lies in P(U) if f |Ui 2 P(Ui)
for all i.

The first example CX,T (U) is certainly a sheaf, while the second is not in
general. Suppose that T has at least two elements t1, t2, and that X contains
a disconnected open set U . Then we can write U = U1 [ U2 as a union of two
disjoint open sets. The function ⌧ taking the value of ti on Ui is not in T

pre(U),
but ⌧ |Ui 2 T

pre(Ui). Therefore T
pre is not sheaf.

However, there is a simple remedy.
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Example 2.1.5. A function is locally constant if it is constant in a neigh-
bourhood of a point. For instance, the function ⌧ constructed above is locally
constant but not constant. The set of locally constant functions, denoted by
T (U) or TX(U), is a now sheaf, precisely because the condition can be checked
locally. A sheaf of this form is called a constant sheaf.

There are a number of further examples that will come up frequently.

Example 2.1.6. Let X = Rn or a C
1 manifold, the sets C

1(U) of C1 real
valued functions form a sheaf.

Example 2.1.7. Let X = Cn or a complex manifold, the sets O(U) of holo-
morphic functions on U form a sheaf.

Example 2.1.8. Let L be a linear di↵erential operator on Rn with C
1 coef-

ficients (e. g.
P

@
2
/@x

2
i ). Let S(U) denote the space of C1 solutions in U .

This is a sheaf.

Example 2.1.9. Let X = Rn, the sets L
1(U) of L

1 or summable functions
forms a presheaf which is not a sheaf, because summability is a global condition
and not a local one.

We can always create a sheaf from a presheaf by the following construction.

Example 2.1.10. Given a presheaf P of functions from X to T . Define the

P
s(U) = {f : U ! T | 8x 2 U, 9 a neighbourhood Ux of x, such that f |Ux 2 P(Ux)}

This is a sheaf called the sheafification of P.

When P is a presheaf of constant functions, Ps is exactly the sheaf of locally
constant functions. When this construction is applied to the presheaf L1, we
obtain the sheaf of locally L

1 functions.

2.2 Manifolds again

We can now reinterpret the notion of a C
1 or complex manifold. We start with

a metrizable space X and a sheaf of C1 or holomorphic functions. We require
that each point has a nbhd homeomorphic to a ball in Rn or Cn so that the
homeomorphism preserves this special class of functions. To be more precise, let
us fix a field k such as k = R or C. Then Mapk(X) is a commutative k-algebra
with pointwise addition and multplication.

Definition 2.2.1. Let R be a sheaf of k-valued functions on X. We say that
R is a sheaf of algebras if each R(U) ✓ Mapk(U) is a subalgebra. Call the
pair (X,R) a concrete ringed space over k simply a k-space. We will sometimes
refer to elements of R(U) as distinguished functions.

The sheaf R is called the structure sheaf of X. Basic examples of R-spaces
are (Rn

, CRn,R), (Rn
, C

1), and (Cn
,O) is an example of a C-space.
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Definition 2.2.2. A morphism of k-spaces (X,R) ! (Y,S) is a continuous
map F : X ! Y such that the pullback of distinguished functions are distin-
guished. More precisely, the condition is that if f 2 S(U) then F

⇤
f 2 R(F�1

U),
where F

⇤
f = f � F |F�1U .

For example, a C
1 map F : Rn

! Rm induces a morphism (Rn
, C

1) !

(Rm
, C

1) of R-spaces, and a holomorphic map F : Cn
! Cm induces a mor-

phism of C-spaces. The converse is also true, and will be left for the exercises.
We note that the collection of k-spaces and morphisms forms a category.

In any category, we have a notion of isomorphism. We will spell this out for
k-spaces.

Definition 2.2.3. An isomorphism of k-spaces (X,R) ⇠= (Y,S) is a homeo-
morphism F : X ! Y such that f 2 S(U) if and only if F ⇤

f 2 R(F�1
U).

Given a sheaf S on X and open set U ⇢ X, let S|U denote the sheaf on
U defined by V 7! S(V ) for each V ✓ U . The following gives an alternative
approach to manifolds.

Proposition 2.2.4. An n-dimensional C1 manifold (resp. complex manifold)
is the same thing as an R-space (X,C

1

X ) (resp. C-space (X,OX)) such that

1. X is metrizable

2. X admits an open cover {Ui} such that each (Ui, C
1

X |Ui) is isomorphic to
(Bi, C

1

Bi
) for open balls Bi ⇢ Rn (resp. ... isomorphic to (Bi,OBi) for

balls in Bi ⇢ Cn).

A C
1 (resp. holomorphic) map between manifolds is the same thing as a mor-

phism of the corresponding R-spaces. (resp. C-spaces).

We omit the proof which is not hard. We give one further example of a
complex manifold with the help of this characterization.

Example 2.2.5. The complex Grassmanian G = Gr(2, n) is the set of 2 dimen-
sional subspaces of Cn. Let M ⇢ C2n be the open set of 2⇥ n matrices of rank
2. Let ⇡ : M ! G be the surjective map which sends a matrix to the span of its
rows. Give G the quotient topology induced from M , and define f 2 OG(U) if
and only if ⇡ � f 2 OM (⇡�1

U). For i 6= j, let Uij ⇢ M be the set of matrices
with (1, 0)t and (0, 1)t for the ith and jth columns. One can check that

C2n�4 ⇠= Uij
⇠= ⇡(Uij)

as ringed spaces. Since the images ⇡(Uij) cover G, we conclude that G is a
2n� 4 dimensional complex manifold.

We note that the sheaf theory approach to manifolds is not commonly dis-
cussed in most references, but it has some advantages in algebraic or complex
geometry where we consider more general kinds of spaces.
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Example 2.2.6. Let f 2 C[z1, . . . , zn] be a nonconstant polynomial, and let
X = f

�1(0). Since we didn’t impose a condition on the gradient, X need not
be a topological manifold. However, we can still introduce a sheaf of holomor-
phic functions, where OX(U) consists of restrictions of holomorphic functions
from an open subset of Cn containing U . (This is more accurately the sheaf of
holomorphic functions on the reduced space corresponding to X.)

2.3 Stalks

Given two functions defined in possibly di↵erent neighbourhoods of a point
x 2 X, we say they have the same germ at x if their restrictions to some
common neighbourhood agree. This is is an equivalence relation. The germ
at x of a function f defined near X is the equivalence class containing f . We
denote this by fx.

Definition 2.3.1. Given a presheaf of functions P, its stalk Px at x is the set
of germs of functions contained in some P(U) with x 2 U .

It will be useful to give a more abstract characterization of the stalk using
direct limits (which are also called inductive limits, or filtered colimits). We
explain direct limits in the present context. Suppose that a set L is equipped
with a family of maps P(U) ! L, where U ranges over open neighbourhoods
of x. We will say that the family is a compatible family if P(U) ! L factors
through P(V ), whenever V ⇢ U . The maps P(U) ! Px given by f 7! fx

forms a compatible family. A set L equipped with a compatible family of maps
is called a direct limit of P(U) if and only if for any M with a compatible
family P(U) ! M , there is a unique map L ! M making the obvious diagrams
commute. This property characterizes L up to isomorphism, so we may speak
of the direct limit

lim
�!
x2U

P(U).

Lemma 2.3.2. Px = lim
�!x2U

P(U).

Proof. Suppose that � : P(U) ! M is a compatible family. Then �(f) = �(f |V )
whenever f 2 P(U) and x 2 V ⇢ U . Therefore �(f) depends only on the germ
fx. Thus � induces a map Px ! M as required.

All the examples of k-spaces encountered so far satisfy the following addi-
tional property.

Definition 2.3.3. We will say that a concrete k-space (X,R) is locally ringed
if 1/f 2 R(U) when f 2 R(U) is nowhere zero.

Recall that a ring R is local if it has a unique maximal ideal, say m. The
quotient R/m is called the residue field.
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Lemma 2.3.4. Suppose that k = R or C, and (X,R) is a ringed space, such
that R(U) consists of continuous functions and 1/f 2 R(U) when f 2 R(U)
is nowhere zero. Then for any x 2 X Rx is a local ring with residue field
isomorphic to k. In particular, this applies to C

1 and complex manifolds.

Proof. Let mx be the set of germs of functions vanishing at x. For Rx to be
local with maximal ideal mx, it is necessary and su�cient that each f 2 Rx\mx

is invertible. This is clear since 1/f |U 2 R(U) for some x 2 U .
To see that Rx/mx = k, it is enough to observe that the ideal mx is the

kernel of the evaluation map ev : Rx ! k given by ev(f) = f(x), and the map
is surjective, because ev(a) = a when a 2 k.

Proposition 2.3.5. When (X,OX) is an n-dimensional complex manifold, the
local ring OX,x can be identified with ring of convergent power series in n vari-
ables.

Proof. We can replace (X,x) by (Cn
, 0). Then the germ of a holomorphic

function at 0 is completely determined by its Taylor series, which converges in
a nbhd of 0.

We write
C{z1, . . . , zn} ⇢ C[z1, . . . , zn]

for the rings of convergent and formal power series in the above variables. Both
rings are local with maximal ideal m = (z1, . . . , zn). Also both rings are known
to be noetherian [see for example Zariski-Samuel Vol II], so standard results
from commutative algebra can be applied. By contrast, when X is a C

1-
manifold, the stalks are non-noetherian local rings. This is because \n m

n

contains nonzero functions such as
(
e
�1/x2

if x > 0

0 otherwise

when X = R, so it violates Krull’s theorem [Atiyah-Macdonald, pp 110-111].
Nevertheless, the maximal ideals are finitely generated.

Proposition 2.3.6. If R is the ring of germs at 0 of C1 functions on Rn, then
its maximal ideal m is generated by the coordinate functions x1, . . . xn.

Proof. One checks that if f 2 m, then

f =
X

i

xi

Z 1

0

@f

@xi
(tx1, . . . txn)dt

If R is a local ring with maximal ideal m then k = R/m is a field called the
residue field. We will often convey all this by referring to the triple (R,m, k)
as a local ring. For stalks of C1 and complex manifolds, the residue fields are
respectively, R and C. We note the following properties hold in these cases.
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1. There is an inclusion k ⇢ R which gives a splitting of the natural map
R ! k.

2. The ideal m is finitely generated.

2.4 Tangent spaces

The tangent space to a manifold at a point is the best linear approximation to
it. For a hypersurface X = f

�1(0) ⇢ Rn with rf |X 6= 0. We could use the
definition from calculus: the tangent space at p 2 X is

Tp = {v 2 Rn
| v ·r(f)(p) = 0}

But this depends on the embedding. It is better to use a more intrinsic approach.
The idea is that to each tangent vector v 2 Tp we can associate a directional
derivative �v which operates on germs of functions at p. Since v 7! �v involves no
loss of information, we may as well identify them. Thus we arrive the following
abstract definition.

Definition 2.4.1. Let (R,m, k) be a local ring of a C
1 or complex manifold

X at a point p, or more generally a ring satisfying the conditions at the end
of the last section. Define the tangent space Tp = TR to be the set of k-linear
derivations Derk(R, k) i.e. linear maps � : R ! k satisfying �(fg) = f(p)�g +
g(p)�f .

When (R,m, k) satisfies the above conditions, R/m
2 splits canonically as

k � m/m
2. The second factor m/m

2 is finite dimensional. Let us focus on
R = C

1
p for now. The decomposition is given by f 7! (f(p), f � f(p)). Set

df = f�f(p). To get a better sense of what this means, expand f using Taylor’s
formula

f(x1, . . . , xn) = f(p) +
X @f

@xi

����
p

xi + r(x1, . . . , xn)

where the remainder r lies in m
2. We thus

df =
X @f

@xi

����
p

(2.1)

as the notation suggests.

Lemma 2.4.2. d : R ! m/m
2 is a R-linear derivation. There is an isomor-

phism
Tp = Hom(m/m

2
,R)

given by � 7! �|m/m2 .

Proof. The first statement is clear from the formula (2.1). Given �
0
2 Hom(m/m

2
, k),

let � = �
0
� d. This lies in Tp, and the map �

0
7! � gives the inverse to the map

above.
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Corollary 2.4.3. T
⇤
p = T

⇤

R
⇠= m/m

2 This is called the cotangent space for
obvious reasons.

Lemma 2.4.4. When (R,m, k) is the ring of germs at 0 of C1 functions on
Rn. Then a basis for Derk(R, k) is given

Di =
@

@xi

����
0

i = 1, . . . n

The lemma is straight forward using previous facts. A homomorphism F :
S ! R of local rings is called local if it takes the maximal ideal of S to the
maximal ideal of R. Under these conditions, we get map of cotangent spaces
T

⇤

S ! T
⇤

R called the codi↵erential of F . When residue fields coincide, we can
dualize this to get a map dF : TR ! TS called the derivative or di↵erential. To
see the name is justified, suppose f : U ! V is a C

1 map, where U ⇢ Rn
, V ⇢

Rm are open. Given p 2 U , and q = f(p), we get a homomorphism f
⇤ : S ! R

between rings of germs of functions on V and U by f
⇤
g = g � f . The following

is straight forward.

Lemma 2.4.5. Using standard bases, df⇤ is represented by the Jacobian matrix
0

@
@f1
@x1

. . .
@f1
@xn

. . .
@fm
@x1

. . .
@fm
@xn

1

A (p)

where fi are the components of f .

Proof. Writing yi = fi(x1, . . . , xn). The chain rule gives

@

@xj
=

X

i

@fi

@xj

@

@yi

Let X be a complex manifold with p 2 X, let OX,p = Op be the ring of germs
of holomorphic functions, and let C

1

X,p be the ring of germs of C1 functions.

Let us define the holomorphic tangent space as Th
p = TOp , and the real tangent

space Tp = TC1
p
. We have local homomorphism OX,p ! C

1

X,p, which induces a

map T
h
p ! Tp of real vector spaces. If z1, . . . , zn are local analytic coordinates,

the previous map is given by
@

@zj
7!

@

@xj

Usually, we identify
@

@zj
=

1

2
(

@

@xj
� i

@

@yj
)

So the map above is essentially the real part. From this description, we see that

T
h
p
⇠= Tp

as R-vector spaces. This isomorphism imparts on Tp the structure of a complex
vector space.
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2.5 Vector fields and the tangent bundle

Let X be a C
1 manifold. A C

1 vector field on X is R-linear derivation
DerR(C1(X), C1(X)). Let V ect(X) denote the set of these. It is clearly an
abelian group. Given f 2 C

1(X) and D 2 V ect(X), fD = g 7! f(x)D(g(x)) is
another vector field. This structure makes V ect(X) into a module over C1(X).
The following is not hard.

Proposition 2.5.1. If U ⇢ X is a coordinate nbhd of X with coordinates
x1, . . . , xn, then

@
@xi

gives a basis for V ect(U) as C1(U)-module. In particular,
V ect(U) is a free module of rank n.

There is an alternative way to understand what a vector field is; it is simply
a “C1 family” of vectors vp 2 Tp for each p. The C

1 requirement can be
made precise by choosing coordinates as above. We describe a coordinate free
approach in the case of a hypersurface X = f

�1(0) ⇢ Rn. Define the manifold

TX = {(p, v) 2 Rn
⇥ Rn

| rf(p) · v = 0}

This has a projection ⇡ : TX ! X given by ⇡(p, v) = p. The space TX together
with ⇡ is called the tangent bundle of X. The fibres are ⇡

�1(p) = Tp (using the
calculus definition). Then a vector field is simply a C

1 map � : X ! TX such
that ⇡ � � = 1, because we want �(p) 2 Tp.

In general:

Theorem 2.5.2. Given a C
1

n-manifold X, there exists a 2n-manifold TX

with a C
1 map ⇡ : TX ! X such that

1. Each fibre ⇡
�1(p) ⇠= Tp

2. There exists an open cover {Ui} and isomorphisms

⇡
�1

Ui

⇡

✏✏

⇠ // Ui ⇥ Rn

yy
Ui

which are linear on the fibres.

3. V ect(X) is isomorphic to the set of C1 maps � : X ! TX (called sections)
such that ⇡ � � = 1.

The data in item 2 is called a “local trivialization”. One can a choose
collection of charts for the cover {Ui}. A detailed construction can be found in
any basic book on manifolds. Here we describe it when we have two charts U1

and U2 with coordinates xi and x
0

i respectively. We extend these to coordinates
x1, . . . , x2n on U1 ⇥ Rn, and x

0
1, . . . , x

0
2n on U2 ⇥ Rn. We want to think of
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xn+i = @/@xi etc. On the intersection U1\U2 we are given functions expressing
x
0

i = �i(x1, . . . , xn) and visa versa. Di↵erentiating gives the transformation rule

x
0

n+i =
@

@x
0

i

=
X

j

@xj

@x
0

i

@

@xj
=

X

j

@xj

@x
0

i

xn+j

for the remaining coordinates. This allows us to glue U1 ⇥ Rn to U2 ⇥ Rn.
The tangent bundle is called trivial, or X is called parallelizable, if we can

take {Ui} = {X}, i.e. there exists an isomorphism TX
⇠= X ⇥ Rn as above.

In algebraic terms, this equivalent to V ect(X) to being a free module of rank
n. Most manifolds are not parallelizable. The simplest counter example is the
sphere S

2.
Finally, let us return to sheaf viewpoint. Given C

1
n-manifold X, if we

view v 2 V ect(U) as a section U ! TX |U = TU , we can restrict it to any
subset V ⇢ U . It should be clear that the assignment V ectX : U 7! V ect(U)
forms a sheaf of abelian groups. In fact, restrictions are compatible with the
module structure in the following sense. Given f 2 C

1(U) and v 2 V ect(U),
fv|V = f |V v|V . We say that U 7! V ect(U) is a sheaf of modules over the sheaf
C

1

X . Finally, if U is a coordinate nbhd, proposition 2.5.1 implies that

V ectX |U
⇠= (C1

U )n

A sheaf of modules with this property is locally free of rank n. In summary:

Proposition 2.5.3. V ectX is a locally free sheaf of modules over C
1

X of rank
n.

There is a parallel story in the holomorphic case.

Theorem 2.5.4. Given a complex n-manifold X, there exists a complex 2n-
manifold T

h
X with a holomorphic map ⇡ : Th

X ! X such that

1. Each fibre ⇡
�1(p) ⇠= T

h
p

2. There exists an open cover {Ui} and isomorphisms

⇡
�1

Ui

⇡

✏✏

⇠ // Ui ⇥ Cn

yy
Ui

which are linear on the fibres.

3. As C
1 manifolds T

h
X = TX .

Thanks to 3, we will usually drop the h in the future. We can define a
holomorphic vector field as holomphic section � : X ! TX . We can form a
sheaf of holomorphic vector fields as above.
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