INTRODUCTION TO THE HODGE THEORY OF ALGEBRAIC VARIETIES

DONU ARAPURA

1. Projective varieties

Let \mathbb{P}^n be n-dimensional complex projective space. This is the set of 1-dimensional subspaces of \mathbb{C}^{n+1} . A subset $X \subset \mathbb{P}^n$ is called an algebraic subvariety if it is the zero set of a collection of homogeneous polynomials called definining polynomials. An algebraic subvariety of some \mathbb{P}^n is called a projective algebraic variety. A subvariety of \mathbb{P}^n is called nonsingular or smooth if the Jacobian of these polynomials has the expected rank, locally. It follows that it is a complex manifold. Conversely:

Theorem 1.1 (Chow). Any complex submanifold of \mathbb{P}^n is an algebraic subvariety.

Example 1.2. Any compact Riemann surface can be realized as an algebraic subvariety of \mathbb{P}^3 .

Example 1.3. Grassmians and flag varieties are projective algebraic.

Example 1.4. The product of two projective algebraic varieties is projective algebraic.

Example 1.5. The set of all subvarieties of \mathbb{P}^n has the structure of a countable union of projective algebraic varieties.

A map $f: X \to Y$ between smooth projective varieties is called a morphism if its graph is a subvariety of $X \times Y$ (this definition isn't quite correct for singular varieties).

Corollary 1.6 (to Chow). *f is a morphism if and only if it is holomorphic.*

2. Käher metrics

A Hermitean metric on a complex manifold is a metric

$$\sum g_{ij}dz_i\otimes d\bar{z}_j$$

whose associated Käher form

$$\omega = \frac{\sqrt{-1}}{2} \sum g_{ij} dz_i \wedge d\bar{z}_j$$

is closed. A complex manifold is called Kähler if it possessess such a metric. The main example for us is:

Example 2.1. \mathbb{P}^n has a unique U(n+1)-invariant metric of volume 1 called the Fubini-Study metric. This metric is Kähler.

Proposition 2.2. The restriction of a Kähler metric to a submanifold is Kälher.

Corollary 2.3. Any smooth projective algebraic variety is Kähler.

Not all examples arise this way:

Example 2.4. The Euclidean metric on a complex torus is Kähler. However, if $L \subset \mathbb{C}^n$ is a generic lattice with n > 1, \mathbb{C}^n/L will not be an algebraic variety.

The importance of Kähler metrics stems from the following principle:

Principle 2.5. An identity involving natural differential operators of order ≤ 1 holds for a Kähler manifold if it holds for Euclidean space.

Operators for which this applies are $d, \partial, \overline{\partial} \dots$ This principle can be used to prove a series of nontrivial identities called the Kähler identities.

3. The Hodge theorem

Recall that the de Rham cohomology of a manifold is

$$H^*(X) = \frac{\ker d}{\text{image } d}$$

where d is the exterior derivative on differential forms. When X is a Riemannian manifold, there is a distinguished representative for each cohomology class. The Laplacian is defined as $\Delta = dd^* + d^*d$, where d^* is the adjoint to d. A form is called harmonic if $\Delta \alpha = 0$.

Theorem 3.1 (Hodge). Let X be a compact Riemannian manifold. Then any de Rham cohomology class has a unique harmonic representative.

Recall the complex valued form is said to be of (p,q)-type if it can be expressed in local analytic coordinates as

$$\sum f_{i_1,\dots i_p;j_1,\dots j_q} dz_{i_1} \wedge \dots dz_{i_p} \wedge d\bar{z}_{j_1} \wedge \dots d\bar{z}_{j_q}$$

This together with the Kähler identities implies

Theorem 3.2 (Hodge Decomposition). Suppose that X is a compact Kähler manifold. A form is harmonic if and only if its complex conjugat is harmonic if and only if all of its (p,q) components are harmonic. Therefore there is a decomposition

$$H^i(X) = \bigoplus_{p+q=i} H^{pq}$$

where H^{pq} is the space of (p,q) harmonic forms. This satisfies $\overline{H^{pq}} = H^{qp}$

Corollary 3.3. If i is odd then the ith Betti number is even.

Theorem 3.4 (Hard Lefschetz). Suppose that X is an n dimensional compact Kähler manifold. Let $L = [\omega]$ be cup product with the Kähler form. Then

$$L^i: H^{n-i}(X) \to H^{n+i}(X)$$

is an isomorphism.

4. Hodge structures

We define a Hodge structure of weight i to consist of a finitely generated Abelian group $H_{\mathbb{Z}}$ together with a decomposition

$$H = H_{\mathbb{Z}} \otimes \mathbb{C} = \bigoplus_{p+q=i} H^{pq}$$

such that $\overline{H^{pq}} = H^{qp}$ We define a morphism of Hodge structures $(H_{\mathbb{Z}}, \ldots) \to (G_{\mathbb{Z}}, \ldots)$ to be homomorphism of Abelian groups $f_{\mathbb{Z}} : H_Z \to G_{\mathbb{Z}}$ such $f \otimes \mathbb{C}$ preserverse the decomposition. Given a Hodge structure, we define the Hodge filtration by

$$F^p H = \bigoplus_{p' \ge p} H^{p'q}$$

Given a Hodge structure H of weight and an integer m, the mth Tate twist H(m) of H has the same Abelian as before, with decomposition

$$[H(m)]^{p,q} = H^{p-m,q-m}$$

 $\mathbb{Q}(m)$ is the unique Hodge structure of weight 2m.

Given a map of compact oriented manifolds $f: X \to Y$, recall there are maps

$$f^*: H^i(Y) \to H^i(X)$$

and

$$f_*: H^i(X) \to H^{i+c}(Y)$$

where $c = \dim_{\mathbb{R}} Y - \dim_{\mathbb{R}} X$ is the difference of real dimensions. The Gysin maps f_* are defined using Poincaré duality.

Theorem 4.1 (Hodge Decomposition II). The Hodge structure on $H^i(X) = H^i(X, \mathbb{Z}) \otimes \mathbb{C}$, where X is a compact Kähler manifold is bifunctorial. More precisely, given a holomorphic map $f: X \to Y$ there are morphisms

$$f^*: H^i(Y) \to H^i(X)$$

and

$$f_*: H^i(X)(-c) \to H^{i+2c}(Y)$$

of Hodge strucutres, where c is the difference of complex dimensions.

5. The Hodge conjecture

Let X be a smooth projective variety. A Hodge class of type (p,p) is an element of $H^{2p}(Z,\mathbb{Q})\cap H^{p,p}$. Examples of Hodge classes can be constructed as follows: Suppose that $Z\subset X$ is a subvariety of codimension p. If Z is nonsingular, we have a Gysin homomorphism $f_*:H^0(Z)(-p)\to H^{2p}(X)$ associated to the inclusion. We have an isomorphism $H^0(Z)(-p)\cong \mathbb{Q}(-p)$ The fundamental class is the image $[Z]=f_*11$. It is a Hodge class of type (p,p). More generally if $Z\subset X$ is a singular subvariety. We can let $p:\tilde{Z}\to Z$ be a resolution of singularities, which exists by a fundamental theorem of Hironaka. The class $[Z]=(f\circ p)_*1$ can be shown to be independent of \tilde{Z} , and is the fundamental class of Z. This is again a Hodge class of type (p,p). The famous Hodge conjecture asserts that all Hodge classes arise this way:

Conjecture 5.1 (The Hodge Conjecture). Every Hodge class is a linear combination of fundamental classes of subvarieties.

Remarks:

- (1) The Hodge conjecture (HC) holds for (1, 1) classes.
- (2) The analogue of HC for Kähler manifolds is known to be false (Zucker).
- (3) If dim X = n, then by Hard Lefschetz HC holds for (n p, n p) classes on X if it holds for (p, p). In particular, it holds for (n 1, n 1).
- (4) From previous two items, HC holds when dim $X \leq 3$. The case of dim X = 4 is open!

Part of the significance of HC stems from the theory of motives. Without defining things precisely, we state the basic result.

Proposition 5.2. If HC holds, then

- (1) Numerical equivalence coincides with homological equivalence.
- (2) The category of (neq) motives embeds as a full abelian subcategory of the category of Hodge structures.

The second statement is equivalent to HC.

The *coniveau* filtration on $H^i(X)$ is given by

$$\begin{split} N^p H^i(X) &= \sum_{codimS \geq p} \mathrm{Ker}[H^i(X) \to H^i(X - S)] \\ &= \sum_{codimS = q \geq p} \mathrm{Im}[H^{i-2q}(\tilde{S}) \to H^i(X)] \end{split}$$

where S runs over closed subvarieties, and \tilde{S} are fixed desingularizations. $N^pH^i(X)$ is a sub-Hodge structure of $H^i(X)$ contained in $F^pH^i(X)$. Conversely,

Conjecture 5.3 (The generalized Hodge conjecture). $N^pH^i(X)$ is the maximal sub-Hodge structure of $H^i(X)$ contained in $F^pH^i(X)$.

Remarks:

- (1) The generalized Hodge conjecture (GHC) was formulated in the above way by Grothendieck; he gave a countrerexample to the original formulation of Hodge.
- (2) GHC implies HC. More precisely, $N^pH^{2p}(X)$ is the span of fundamental classes, and the space of Hodge cycles is the maximal Hodge structure of $F^pH^{2p}(X)$.
- (3) GHC is open even in $\dim = 3$.

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, IN 47907, U.S.A.