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Let A be an abelian category of “sheaf-like” objects on a smooth
complex variety X.

For example, A could be Sh(X), coherent Dx-modules, the
category of perverse sheaves on X, or the category of Hodge
modules on X (which we haven't defined yet).

Definition

Let Z C X be an irreducible closed subset. An object M € A has
strict support Z if supp(M) = Z and M has no sub- or quotient
objects with support properly contained in Z.



Example

The Dx-module Ox has strict support X (it is simple and
supp(Ox) = X). Note that Ox typically does not have strict
support X as an Ox-module.

Example

Consider M = C[t*!] as a C[t, d;]-module. We have
supp(M) = X, yet M has C[t] as a subobject, and the quotient

C[tHY/Clt] = (¢t L, t72,¢73,...)

is supported on [t = 0]. So M does not have strict support X.



We want to define the category of (pure) Hodge modules on a
smooth complex variety X so that, loosely speaking, the following
desiderata are true:

1. If M is a Hodge module, then M = @Z Mz, where Z runs

over irreducible closed subsets of X, and each M7 has strict
support Z. (we call this a strict support decomposition).



2. If M is a Hodge module of strict support Z, then there is a
nontrivial open embedding j : U < Z such that j*M “is a
variation of Hodge structure”. Moreover, M is uniquely
determined by j*M.



3. In addition, given an algebraic function f : X — C we want to
define the nearby cycles “i¢(M)" of M. This object will have
a monodromy filtration, whose graded pieces should again be
(pure) Hodge modules (of the appropriate weights).



We're about to learn about V-filtrations. Why do this?

In the setting of (possibly filtered) coherent Dx-modules M,
V-filtrations

1.

are used to define nearby and vanishing cycles for (possibly
filtered) Dx-modules.

2. detect the existence of a strict support decomposition

3. can be used to give criteria for when objects are determined

by their restriction to an open subset.



The plan:
» Now, we will discuss V-filtrations on (non-filtered)
Dx-modules.
» Later, we will move to the setting of modules with a good
filtration F*.
References:
» Saito, “Modules de Hodge Polarisables”, section 3.

> Popa, “Lecture notes on the V-filtration”.



Setting

» X is an affine (for simplicity) smooth complex variety.

» t: X — Cis an algebraic function, such that D <% X, the
vanishing locus of t, is smooth.
> U< X is the complement of D in X.

» M is a coherent (left) Dx-module. In general, we will say
“Dx-module” when we mean “coherent (left) Dx-module”.



Definition of V-filtration

Definition
A (rational) V-filtration of M along t is a decreasing, exhaustive
filtration V*® of M by coherent Dx|t, O;t]-submodules, indexed by
the ordered group Q; it must satisfy the following conditions:

» Discreteness

> t- VM C VLM, with equality if a > 0.

> 9, - VM C Ve lm

> Let VoM = Ve M. The action of d;t — a on

o'>a
gr*M = VM / V=M

is nilpotent.

Remark: Each gr®M is naturally a coherent Dx-module, supported
on D.



Remark on conventions: Given a V-filtration V® on M, one
obtains an increasing filtration V4 by setting

V,=V¢
This filtration satisfies e.g. t- V,, C V,_1, and the action of
6tt+a: t8t+a+1

on V¥/V<%is nilpotent. It is common for “V-filtration” to refer
to this kind of increasing filtration.



Example
Take M = Ox. Define

a N t[aw_lox, if >0
ViOx = {(’)X, otherwise
So this is the filtration
o= [0x]° = [0x]' D [tOx]* D [tPOx]* D ...

where [—]“ designates V%, and we omit the non-integer steps.
One easily checks that this is a V-filtration; the key point is that

Oet(t*) = (k4 1)tk

Interesting graded pieces: gri, = ([t'"1]), i > 0.



Example

Now take M = j,j*Ox, i.e. Oy regarded as a Dx-module. Define
VeOy to be the Ox-submodule generated by t/*1-1,

So this is the filtration
o[ L )P o (L )P D (Lt ) D
where [—]* designates V*. This is a V-filtration.

Interesting graded pieces: gri, = ([t'"1]), i € Z.



Example

Take X = Spec(C|[t]), and let M = C(tg : k € Z), with t, O
acting in the way you'd expect. Define V¥M to be the
Ox-submodule generated by t[@~1/21-1/2,

So this is the filtration

N=

-D[(t_%,t_%,t%,...)]_ D[t_%,t%,...)]%D[t%,t ,...)]33...

where [—]¢ designates V*. This is a V-filtration.

Interesting graded pieces:
1 _3 1 _1
gr2(M) = ([t2]), grz2(M) = {[t72]), ...



Example
Fixa 8 € Q. Let Mg, be the Dx-module generated by expressions
of the form

k! ’

t"Hlog! (1) ifo<k<p
€k = L
0, otherwise

where j, k € Z, and t, O; act in the way you'd expect. Then
1 . .
O¢t - € k :ﬂ[(ﬁ + j 4+ 1)tPHlogh(t) + ktPHlogh—1(1)]
=(B+J+1)ejk+ €k

implying that each e; , is annihilated by a power of
Oit — 8 —j — 1. There is a V-filtration such that

+1
gry T Mg, = (ejol, - - - [6,0])



Example
Take X = Spec(C|[t]), and M = C[t, 0:]/C[t, 0¢]t = C[0].

Define VOM = {9F: 0 < k < —[a]}.
So this is the filtration
D (08,06, DI D (0, DI D I D [0 =

where [—]* designates V*. This is a V-filtration.

Interesting graded pieces: gri, = ([9;']), i < 0. (Notice e.g.
that
81-1.'[81-] - [8tt(9t] - [8t(8tt - ].)] - [—8t])



Example

Generalizing the previous example, suppose that
supp(M) C D = [t = 0]. Recall that Kashiwara's equivalence gave
us an isomorphism

¢: M= EPM =M @ Clo]
n<0

where M™ = ker(0;t — n) = 0; "MP. Define the V-filtration:
VaM — ¢—1( @ Mn>
n>[al

Key facts: Note that V>°M = 0; conversely, one easily checks
that supp(M) C D if V>OM = 0. Also note that M is determined
by VOM = MP°,



Lemma
There is at most one V-filtration (with respect to t) on M.

Corollary

Let ¢ : M — N be a morphism of Dx-modules equipped with
V-filtrations along t. Then ¢ is strictly compatible with these
filtrations, namely,

H(VOM) = (M) N VEN

Proof (Cor.): One immediately checks that both sides of the
equation define a V-filtration on im(¢).

O



Corollary

For each a0 € Q, the following functors are exact:
» M— VM
> M+ gr*M



The following result is a prototype of desideratum 2 from the
introduction:

Proposition 1

Let M,N be coherent Dx-modules equipped with V-filtrations
along t. Assume that M,N have strict support X. Then any
isomorphism ¢y : j*M = j* N extends to an isomorphism
¢:M— N.

Before proving this, we give two lemmas that are useful more
broadly.



Lemma A
Let M’ C M be an inclusion of Dx-modules equipped with

V-filtrations along t. Assume that j*M’ — j*M is an isomorphism.

Then for all o > 0,
VM = VEM

Proof: The previous corollary gives an an exact sequence
0— VM — VM — V*(M/M') — 0

But M/M’ is supported on D, and we have seen that this implies

that
V‘“(M/M’) =0

when o > 0.



Lemma B
Let M be a Dx-module equipped with V-filtration along t.
Assume that M has strict support X. Then

M = Dx - V>°M
Proof: The quotient satisfies
V>0 (M/(Dx - v>OM)) =0

implying that it is supported within D.

O



Now we return to prove the proposition:

Proposition 1

Let M,N be coherent Dx-modules equipped with V-filtrations
along t. Assume that M,N have strict support X. Then any
isomorphism ¢y : j*M =5 j* N extends to an isomorphism
¢:M— N.

Proof: Consider the composite morphism
¢ M= j M= j N

where the second arrow is induced by ¢y. The first arrow is
injective because its kernel is supported on D, and yet M has strict
support X. We claim that im(¢) = N. Indeed, by our lemmas,

im(¢) = Dx - V>%im(¢) = Dx - VON =N

O

(the middle equality uses that j*im(¢) = j*N).



Now we'd like to pause and discuss how nearby and vanishing
cycles along the hypersurface [t = 0] are defined using V.

Definition
> ¢:1M = grl,M (unipotent nearby cycles)
> ¢:1M = grl,M (unipotent vanishing cycles)

Caveats: these are only the “unipotent parts” of nearby/vanishing
cycles; also, we want to define these objects even when [t = 0] is
not smooth; finally, we'd like to know what relation these objects
have with the previous notions of nearby/vanishing cycles. We will
address all of these issues later. For now, note that we have
morphisms

can =0t 1 Y 1M 2 g 1Mt =: var

such that can o var and var o can are nilpotent (using

[Of, t] = 1).



Remark: It can be shown that the following maps are
isomorphisms:

> t:gr'M S grotIM, if a £ 0;
> 0; 1 gr°M S gromIM, if o # 1.



can :=0; : Y1 aM = g 1M t =: var

The following result is an important step towards Desideratum 1
from the introduction.

Proposition 2

Let M' = Dx - V>OM C M. Let HYM C M be the subobject
generated by sections supported within D. Then:

1. M’ is the smallest subobject of M satisfying j*M’ = j*M.
2. M/M' = fl.o coker(can) = i;.coker(can), and
3. HOM = fl.o ker(var) = iyker(var).

Proof (1): If M" C M satisfies j*M" = j*M, then by Lemma A,
VoM = V>OM" | implying

Dx - VM c Dx - V>OM" ¢ M”



can :=0; : Y1 aM = g 1M t =: var

We will indicate a proof of the third statement:

Goal
HOM = fl.o ker(var) = i ker(var)

Proof (3): 'We claim that the obvious map VOM — gr{, M
induces an isomorphism

ker(t: M — M) = ker(t : grfyM — griy M)



Claim
ker(t : M — M) = ker(t : gry M — gri, M)

Proof (3,cont.): First we need to see that
ker(t: M — M) c V'M
If tm=0and me V*M for o < 0, we have that
(—a)Pm = (0st —a)Pm e VM

for some p > 0. Repeating this process, and using the discreteness
of V, we obtain m e VOM.



Claim
ker(t : M — M) = ker(t : grfyy M — gri, M)

Proof (3,cont.): Next we need to see that our map is injective.
This follows from the equivalence

supp(N) C D <= V*N =0 forall >0

applied to N = Dx - ker(t : M — M).



Claim
ker(t: M — M) = ker(t : grd M — gri, M)

Proof (3,cont.): Finally, we need to see that our map is surjective.
There is a morphism of short exact sequences

0—— VM —— VOMng(\)/MHO
ok
00— V>IM—~ VlMngbMHO

Part of the definition of V-filtration was that ¢t : V"M — V>1M
is surjective. Using the snake lemma, the claim is proved.



Recall that we are trying to prove that
0
HLM = / ker(var) = i ker(var)
i
What we know is that
ker(t : M — M) = ker(t : gry M — gri, M)

(this is a morphism of Dp-modules). Under fl.o, the left side
becomes H%M by Kashiwara's theorem; the right side is

fl.o ker(var). Part two of the proposition is proved.



In the discussion so far, the hypersurface D = [t = 0] has been
smooth. We would like to start making claims about arbitrary
hypersurfaces, using the tools developed so far.

To this end, suppose we have a function f : X — C (where
D = [f = 0] need not be smooth). Let

= (idx,f): X = X x C

be the graph morphism, and let t : X x C — C be the projecion.
Since X = Xp := [t = 0] is smooth, given a Dx module M, we can
consider V-filtrations along [t = 0] for the Dx xc-module

0
/ M=/ M
Wf



If e = f(X) € X x C, then Tr N Xy = +f(D) C Xo. So using
Kashiwara's theorem we have the following:
Key Observation

The functor Li induces an equivalence between Dp-modules and
Dx «c-modules supported on Lf(D) =TrNXp.




From now on, for an algebraic function f : X — C and a
Dx-module M, by

“V-filtration along f for M"
we will mean
“V-filtration along Xy for LiM”

One checks that when [f = 0] is smooth this is compatible with
everything we've done so far. Also, we denote

Mg :=fM



To illustrate the use of the Key Observation, recall a proposition
from earlier about modules with a V-filtration along smooth D:

Proposition 2

Let M’ C M be the smallest subobject satisfying j*M’ = j*M. Let
7—[%/\/1 C M be the subobject generated by sections supported
within D. We have maps

can =0y :gryM = gryM : t =: var

1. M/M' = fl.o coker(can) = iycoker(can), and
2. HOYM = fl.o ker(var) = iyker(var).



We can improve this to the following statement:
Proposition 2 (improved)

Let M be a Dx-module admitting a V-filtration along D = [f = 0]
(which may not be smooth). We then have maps

can:= 0 : gr:\l/l\/lf = grc\)/l\/lf ©t=: var

1. M has no nonzero subobject supported on D iff ker(var) = 0.
2. M has no nonzero quotient supported on D iff coker(can) = 0.
(If D is smooth, these are immediate from the old statement.) If

D is not smooth and (say) ker(var) = 0, the old statement says
that H%OLQI\/I = 0; Kashiwara implies that H4M = 0. O



We can improve this to the following statement:
Proposition 2 (improved)

Let M be a Dx-module admitting a V-filtration along D = [f = 0]
(which may not be smooth). We then have maps

can:= 0 : gr%/Mf = gr?/Mf ct=: var

1. M has no nonzero subobject supported on D iff ker(var) = 0.

2. M has no nonzero quotient supported on D iff coker(can) = 0.

Remark: We have generally that
gry (M) = im(can¢)

gry (H,t\.M) = ker(vary)



cang := Oy : gr%/Mf = gr(\)/l\/lf ot =: vary

Now we can characterize modules with strict support
(decompositions) using V-filtrations.

Theorem
Let M be a Dx-module admitting a V-filtration along every
hypersurface.

1. M has strict support X iff for all f:
ker(varf) = coker(cans) =0
2. M has a strict support decomposition iff for all f:

gr% Mg = ker(vars) @ im(cany)



cang := Oy : gr%/Mf = gr(\)/l\/lf ot =: vary
Proof (part 1): Immediate from (improved) Proposition 2.

Proof (part 2): Suppose first that M has a strict support
decomposition. Given a D = [f = 0], we want to show that

gry Ms = ker(vars) @ im(cany)

We can reduce to the case where M has strict support Z.

» If D does not contain Z, improved Proposition 2 implies that
gr% My = im(can¢) and ker(varg) =0
» |If D contains Z, then
gryMe =0

implying that gr),Ms = ker(varf) and im(cans) = 0.



cang := Oy : gr%/Mf = gr(\)/l\/lf ot =: vary

Proof (part 2, cont.): For the converse, suppose that for all f,
gry My = ker(vars) @ im(cany)
Let M’ be the minimal subobject of My satisfying
M'le0 = (Mf)lezo

We claim that M" := M' N HS)(OMf = 0. Our assumption, together
with Proposition 2, implies that

gryyM” C ker(vars) Nim(cang) = 0

implying that M" itself is zero (since V>OM" = 0), proving the
claim. Additionally, it is immediate that M’ has no quotients
supported in Xp.



cang := Oy : gr%/Mf = gr(\)/l\/lf ot =: vary
Proof (part 2, cont.): Now consider the short exact sequence
0— M &H M — My — Q— 0

defining Q. We see immediately that Q|¢xo = 0. Applying gr(\)/,
and using Prop. 2, we get

0 — im(cans) @ ker(varg) — grfyMr — g3 Q — 0
implying that also gr(\J/Q = 0; this implies @ = 0.
We have shown that, for any f, we have
Me = M’ & H My

where M’ has no sub- or quotient objects supported in X
(equivalently, in f(D)).



cang := Oy : gr%/Mf = gr(\)/l\/lf ot =: vary

Proof (part 2, cont.): Now because M is noetherian, there is a
divisor D = [f = 0] such that any subobject of M supported on a
proper subset of X is supported within D. As above, write

M¢ = M @ H())Q) Mg
for this . Assume for simplicity that Z := supp(M) is irreducible.

We claim that M’ has strict support Z. If M’ has a quotient Q
supported within D’ but not within D, we have a decomposition as

above:
M = M" & H M

where M” has no quotients supported on D’; but ’H%,Li M’ must
be zero as it gives a submodule of M supported within D’ but not
within D. By induction, the proposition is proved. O



