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We now move to the setting of (as always, coherent) Dx-modules
equipped with a good (increasing) filtration F,. We call refer to
these as “filtered Dx-modules”. Here is the key example:
Example

Let (L, V, F*) be a variation of Hodge structure on X. Recall that
V is a flat connection on the vector bundle E := L ® O, giving it
a Dx-module structure. Here F is a decreasing filtration on E, but

Fp:=F°

is increasing and good. The pair (E, F,) is a filtered Dx-module.



Every Hodge module will have an underlying filtered Dx-module.
But in order for the category of Hodge modules to have the desired
properties from the introduction, we have to put conditions on the
possible filtrations F.

For example, in the setting of non-filtered Dx-modules we verified
that

for M, M’ strictly supported on Z and a nontrivial open embedding
j: U— Z. This fails, however, in the filtered case, as the following
example demonstrates.



Example
Let M = C[t] (as a CJ[t, d¢]-module) with the filtration

= [0 = [PClh C [Cldle = ...

where [—], designates Fp,; this is a good filtration. But notice that
it induces the same filtration on M| as the good filtration

-+ = [0]o = [C[t]l C [C[t]]2 = ...
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Setting

» X is an affine (for simplicity) smooth complex variety.

» t: X — Cis an algebraic function, such that D N X, the
vanishing locus of t, is smooth.

> U <L X is the complement of D in X.

» (M, F) is a coherent Dx-module equipped with a good
(increasing) filtration F. We will always assume that M
admits a (rational) V-filtration.



Given (M, F), define
> F,VOM = F,M N VOM
> F,V>OM = F,M O VoM
> FPgr M = (F,VOM)/(F,V>*M)



Lemma C
The following are equivalent:

1. The inclusion
F,V>O0M € VZOM O j*FPM = {u € V>0 : j*(u) € j*F,M}
is an equality

2. Foralla >0, t: FPV*M — FPVtIM is surjective.

Proof (1 implies 2): Using the hypothesis, it is enough to show the
surjectivity of

t: VEMNjj FPM — VOTIM N j j*FPM
This in turn follows from the surjectivity of
t:VOM — Voripm

(part of the definition of V-filtration) plus the invertibility of ¢ on
U.



Lemma C
The following are equivalent:

1. The inclusion
FpVZOM C V2POM N jj* FPM = {u € V>0 : j*(u) € j*F,M}
is an equality

2. Foralla>0,t: FPVOM — FPVotIM is surjective.

Proof (2 implies 1): Conversely, if for & > 0
me V>N j*FPM
then for some N > 0
tNme FPv=OM

We conclude by recalling that t : V>OM — V>OM is bijective. [



Lemma D
Assume that 0 : gr%/M — gr(\)/M is surjective. Then the following
are equivalent:

1. The inclusion F,M D Zizo Ol - Fp_iV>OM is an equality.
2. Forall a <1,

O : FPgryM — F”ng?‘/_lM

is surjective



Before stating the next lemma, recall from last time that if M is
supported inside D, then the V-filtration on M has a simple
description. Kashiwara's equivalence gives us an isomorphism

¢: M= PM =M ®Clo]

n<0
where M" = ker(0;t — n) = 9; "MO. It is worth noting that
M® = ker(9;t - M — M) = ker(t : M — M)
We have that

vem =67 ( @ m7)

n>[a]

In particular VOM = MO, and Gr{yM # 0 only if a € Z <.



Lemma E
Assume that (M, F) is supported within D. Let
FoM = FoM N My. The following are equivalent

1. FpM = ZiZO at : Fp—iMO
2. 0p 1 FyGryM — Fp1Gr* M is surjective (o < 1).

Proof: Let F",M = ZIZO Ot - Fp—iMp. We have that
F'=F < F)Gr,/M = F,Gr,/M
for all i. By design, if i € Z>q then F,’)Gr;iM =09 - Fy,_;GrYyM. So
F'=F < F,Gr,/M=0"-F,_;GryM

By induction on i one sees this is equivalent to condition 2. O



Definition
We say that a filtered (coherent) Dx-module (M, F) has a
V-filtration along D = [f = 0] if for each p:

» My has a V-filtration along Xp = [t = 0]

> t: FVEMg — F, VT My s surjective (o > 0)

> O; : FGryMs — Fpyi1Gro My is surjective (o > 1)

Definition
We say that a filtered (coherent) Dx-module (M, F) is regular and
quasiunipotent along D if (M, F) has a V-filtration along D and

each
GriGrlVGry M

is coherent over GrfDXO. Here W is the monodromy filtration
induced by the nilpotent map

(0et — a) : GryM — GryM



As a consequence of lemmas C and D, we have the following:

Corollary
Let (M, F) be regular and quasiunipotent along t. Assume in
addition that
> O : gri, My — gr{, My is surjective
> O : FpGryMe — Fp+1Gra*1I\/I,c is surjective (for each p)
Then
FoM =" 0] (V>'M N jij* FpeiM)

i>0



cans : YraiM 2 ¢or 1M 1 vary

Proposition
Assume that (M, F) is regular and quasi-unipotent with respect to
all f: X — C. Then (M, F) has a strict support decomposition iff
for all f,

¢r 1M = ker(varg) @ im(cany)

Proof:
Suppose first that (M, F) has a strict support decomposition.
Given a D = [f = 0], we want to show that

praM = gr(\J/l\/lf = ker(vars) @ im(cany)

(as filtered modules).



Proof (cont.): We proceed much as in the nonfiltered case. We
reduce to the case where M has strict support Z.

» If D contains Z, then
griyMe =0

implying that gr),Ms = ker(varr) and im(cans) = 0. The
filtrations obviously coincide.

» If D does not contain Z, we already know (ignoring
filtrations) that

gr% My = im(can¢) and ker(varg) =0

So we have a filtered iso if the RHS is given the “induced”
filtration. (Question: does this agree with the filtration
induced by gr(\)/l\/lf? We would need to know that each
induced map

e : FpgryM) — Fpia(gry M)

is surjective...)



Proof (cont.): For the converse, suppose that for all f,
grd Mg = ker(vars) @ im(cany)

compatibly with the filtrations induced by F. We know from last
time that
M¢ = M’ & H Ms

where M’ has no sub- or quotient objects supported in Xy
(equivalently, in .f(D)). We need to see that the filtrations agree.

(The filtrations on the summands are the induced filtrations; it is
not automatic that this gives a filtered direct sum.)



As a start, we claim that
FpVOMr = F,VOM' @ F, VOHY M

for all p. Given m € F,VOMg, by uniqueness of V' we have
m = my + my for some m; € VOM and m; € VOH%OM)C. It is
enough to show that my € F, VOHS)(O M¢. Because

Fogrd Mg = Fker(vars) @ Fpim(cany)
this follows from the fact that the isomorphism
ker(t : M — M) = ker(t : gry M — gri, M)

from last time is filtered. (We omit the straightforward proof of
this, which uses the assumption on t : F, VM — F, V‘”ll\/lf.)



We have shown so far that
FpVOMr = F,VOM' @ F, VOHS My
for all p. Using the discreteness of V/, and the condition that
Ot : FpgryMe — Fp+1gr(\)‘/_1/\/lf

is surjective for a < 1, we can deduce a similar decomposition for
all « < 0: if me FpV*My, then m = 0ym’ + m” for

m' € Fp_1 VT M¢ and m” € F,V>*Ms. By induction m’ and m"”
have the desired decomposition, giving one for m. O



Theorem (Malgrange, Kashiwara)

Let M be a regular holonomic Dx-module such that Pi¢(DR(M))
has quasi-unipotent monodromy. Then M has a (rational)
V-filtration along t.

Moreover, in this case each gr{;M is a regular holonomic
Dx,-module.



Now we want to compare the Dx-module version of vanishing
cycles with the “previous” notion, on the perverse sheaf side.
Actually, it is nontrivial that the “previous” notion makes sense for
perverse sheaves:

Theorem (Gabber)
Let K® be a perverse sheaf. Then for any f : X — C, the following
complexes are perverse:

Pe(K®) = e K [-1]

Por(K®) := ¢rK*[—1]



There are morphisms
cang : Pir(K®) — Por(K®)
vars 1 Por(K®) — Por(K®)(—1)
and a monodromy action
T : PYe(K®) — Pohr(K®)
Here for a perverse sheaf (with Q-coefficients) P we write
P(k) := P ®q Q(k)

where Q(k) := (2rv/—1)¥Q C C. This is called the “k-th Tate
twist of P".



Lemma
Let 7 : M — M be a morphism in an F-linear abelian category, for

a field F. Assume that g(7) = 0 for some nonzero g(T) € F[T]. If
g = 818

for relatively prime g1,g2, then ker(gi(7)) — M is a direct
summand.

Proof: Application of the Chinese remainder theorem. O



As a consequence, over C there are decompositions

PPe(K®) = @D Piora(K®)

AeCx

Por(K®) = @D Pora(K®)
AECx

where )¢ y and ¢r  are the “generalized eigenspaces” of
eigenvalue .

Remark: 1f 0 < A < 1 then

cans : Papr x — Popr

is an isomorphism.



Theorem (Kashiwara, Malgrange, ...)

Let M be a regular holonomic Dx-module. Denote
e(a) := exp(—2mia). There are canonical isomorphisms

DR(gry Mr) =+ Ptr o(a)(DR(M)), for 0 < o < 1

DR(gryMr) =5 Pé¢ (o) (DR(M)), for 0 < o < 1

such that under these isomorphisms
DR(0 : gr{,l\/lf — gr(\)/l\/lf) =cans : Phr1 — Porq
and

DR(t : grd Ms — grlyM¢(—1)) = vars : Pdrq — Ppra(—1)

(We will comment on the “Tate twist” in the last line
momentarily.)



In particular,
DR(0:t) = cangovars = N : Pipr 1 — Papr 1(—1)

where
_ log(T)

C2my/—1

(here T is restriction of the monodromy operator to Pt 1).




Definition

A regular holonomic Dx-module with Q-structure is a tuple
(M, F,P,0) where (M, F) is a filtered regular holonomic
Dx-module, P is a perverse sheaf over Q on X, and

6 : P®gC = DR(M)
is an isomorphism.

Tate twists: By definition the k-th Tate twist of (M, F,, P, 6) is

(M, Fo_i, P(k), (2nv/—1)k0)



Definition
Let M = (M, F, P) be a regular holonomic Dx-module with
Q-structure.

> e M = Do<r<1(gry Mr, Fo—18rY Mr, Por o(a) P)
> e 1M = (gri, Mr, Fe_1grt, My, Pipr 1 P)
> Qbf,lM = (gr(\)/Mf) FOgr(\)/Mf’pQSf,lp)

Remark: The shift Fq_1 in the definition of ¥ comes from the
fact that we “only” have

O : Fpgr%/l\/lf — Fp+1gr?/l\/lf
After making this shift, vars becomes a morphism

t:gryMe — gri, Me(—1)



Theorem (Kashiwara, Malgrange, ...)

Let M be a regular holonomic Dx-module. Denote
e(a) := exp(—2mia) There are canonical isomorphisms

DR(gryy Mr) = Pt¢ e(a)(DR(M)), for 0 < e < 1

DR(gry Ms) = Pof e(a)(DR(M)), for 0 < < 1



References (last part of talk)

» Deligne, SGA 7, Il, Exp XIV, section 4
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Main steps of the proof of the Theorem:

1. Construct certain Dx-modules M, , by “adjoining” elements
of the form t#*/logh(t)/k! for j € Z and 0 < k < p.

2. Construct a canonical isomorphism of Dx-modules

gy M = colim i" Mo p[—1] =: Y50y M
P

(i* ::ID)oiToID))
3. Construct a canonical isomorphism of perverse sheaves
iT'DR(MZ*?) =5 Pibg (o) (DR(M))

d .
(M{5? = colim Mo, )
p



On Step 1:

Fixa o € Q. Let N, be the Dyi-module generated by
expressions of the form

k.:{t_a";!gk(f), ifo<k<p

0, otherwise

where t, 0; act in the way you'd expect. Then

Sl 1) log (1) + kt~log" (1)

:(_a + 1)eoc7/< + €q,k—1

Ot - €.k =

implying that each e, « is annihilated by a power of 0:t + a — 1.

Let

Ny = colim Ng p
P



On Step 1:

We view N, , as a Dyi-module (where Al has coordinate t). For a
Dx-module M, and a function ¢t : X — Al let

Map = Mt @410,y £ (Nap)

Here, we abuse notation by identifying the function t : X — A!
with the coordinate t on Al. The Dx-module structure on Me. p is
specified as follows: given a derivation ©,

O(m®s)=0(m)®s+me6(s)

where © is the image of © under the canonical map

Tx — t"Ta



On Step 1:

Notice that we then have the following key formula:

Ort(M ® eq k) = (0rtm) ® eq k + M@ (O¢t - €4 k)
=Ot—a+1)mR@ ey, +mM® ey k-1

M, p has the following V-filtration:

VOMap = @ VP M) © e
0<k<p

Let

mod __ ;
MRS = colim My, p
P



On Step 2:

Define a map VM — VM, ,

m i Z [—(9et — a)[*m @ eq k

0<k<p

2

To see why this is plausible, suppose that (0:t — ) - m = 0.

Then, using the key formula,

(Ot = 1) (M ® eq0 — (Ot —a)M ® eq.1)
= (att - a)m &® €a,0 — (att — Oé)2m & €a,1 — (att — Oé)m & €a,0 = 0

This map induces a map

pp - gryM — gr:\l/Mmp



On Step 2:

Lemma
For N admitting a V-filtration, there is an isomorphism

N[0 = griN LN gryN — 0]
where gr(\)/N is in degree 0. O
Remark: Proving this lemma requires an understanding of how V
and gr{, interact with duality. Modulo that, it is equivalent to the

claim that
iTNZS0—gdN S g N — 0]

half of which was proved last time.



On Step 2:

In view of this lemma, we can regard p, : griyy M — gr%/Mmp as a
morphism
Pp 8y M — i (Ma,p)[—1]

Claim: For p sufficiently large, pp, is a quasi-isomorphism.

There are two parts to this claim:
1. gryM = HO(i*(Ma p)[-1]) (p >> 0)
2. HY(i*(Map)[~1]) = 0 (p >> 0)
We will prove the first part and omit proof of the second part.



We have that

HO(* (M p)[1]) = Ker(9 g1y Map — &1y Ma.p)
= ker(td; : gryMa,p — gryyMa p)

The key formula tells us that
t0:(m® eq k) = (Ot — )M gk + M D €y k-1
Therefore Y0 _o Mk ® eq i € ker(tdy) iff (for 0 < k < p—1)
(t0r — a)my + my41 =0 and (t0r — a)mp =0
iff (for 0 < k < p)
my = [—(t0: — a)]*mo and (¢t — @)Pmy =0

So for p such that (0:t — )P acts by zero on gr{; M, pp induces
the desired isomorphism.



On Step 3:

Step 3 generalizes a result from SGA 7, discussed two weeks ago.
We recall the setup:

Xo #Yﬁy*

L

XO*'>X<TX*

For a coherent sheaf F on X, whose restriction F* to X* is locally
free, let F denote its restriction to X . Define

7.717. -

n o (F) =i g F

to be the subsheaf generated by images of sections of F of
“moderate growth and quasi-unipotent finite determination”.



On Step 3:

Rather than define this condition, we remark that any such section
f of F can be written as a (finite) sum

f=> (F) M (fax)tlogh(t)

a,k

where f,, i is a section of F*, k >0, a € Q, and -1 < a < 0. In
fact, this decomposition is unique, and we have an isomorphism

TUF)E P T TF @0,y tH(Na))

0<a<l



On Step 3:

In particular:

T'Y"q”(Q' o1 @ Jx Q5% @4 1o, )t 1(Na)
0<a<l

=i (P (% ox Ox[tT]) @e1(0,,) M (Na)

0<a<l

= @) 9 o, (Oxl ] Brioy ()
0<a<l

,1 @ DR( O )mod

0<a<l



On Step 3:

Deligne's result from SGA 7, I, Exp XIV, section 4, gave an
isomorphism

Y (Q%-) = P(DR(Ox))

One shows that (for general M) there is a natural isomorphism

iIDR(MMo4) = DR(yp™d | M)

t,o t,e(a)

Combining this with the above remarks, we get isomorphisms
iT'DR((0x)2°) = Ptbe(a)(DR(Ox))

as claimed in step 3. Deligne actually handles the more general
case of a vector bundle, and the general (regular holonomic) case
can be reduced to this one by devissage.



