
INTRODUCTION TO LIMIT MIXED HODGE STRUCTURES

DONU ARAPURA

1. Hodge theory for a smooth projective curve

Let X be a smooth projective curve over C, then the classical Hodge decompo-
sition yields a decomposition

H1(X,Z)⊗ C = H1(X,C) = H10 ⊕H01

such that H10 = H01. Here H10 can be identified with space of holomorphic 1-
forms H0(X,Ω1

X). We refer to a lattice HZ equipped with such a decomposition as
a Hodge structure of type {(1, 0), (0, 1)}, or simply as a Hodge structure. Define
the Hodge filtration by the rules F 0 = H, F 1 = H10 and F 2 = 0. This clearly
determines the structure, and we prefer to work with for reasons that will be clear
later. For many aspects of the theory it is important to note that our geometric
example possesses a nondegenerate integer valued symplectic pairing 〈, 〉 given by
cup product. Since we can write it as

∫
X
α ∧ β, we see that the following Hodge-

Riemann relations hold

(HR1) F 1 is isotropic i.e. 〈F 1, F 1〉 = 0
(HR2) if α ∈ F 1 is nonzero, then −i〈α, ᾱ〉 > 0.

In the abstract case, such a pairing is called a polarization.
Fix the lattice HZ of rank 2g (it has to be even) with a form 〈, 〉. Then the set

of polarized Hodge structures on it is a parameterized by a complex manifold D.
If we choose symplectic basis of HZ , F 1 is spanned by the rows of matrix of the
form (I, Z) [GH]. The Hodge-Riemann relations will imply that Z is symmetric
with positive definite imaginary part, and D can be identified with the space of
such matrices (called the Siegel upper half plane). If we drop (HR2), then we get
a bigger manifold D∨ which is compact and contains D as an open submanifold.
One rather important fact, which justifies our interest is

Theorem 1.1 (Torelli). X is determined by the polarized Hodge on H1(X).

Torelli’s is usually not stated this way. Instead, one forms a torus

J(X) =
H1(X)

F 1 +H1(X,Z)

called the Jacobian. This carries an ample line bundle, whose first Chern class
(suitably interpreted) is the polarization. The usual statement is that J(X) with
its polarization determines X.

2. Hodge theory on a singular projective curve

Let Y be a singular possibly reducible projective curve, and let π : Ỹ → Y be
the normalization. It is not difficult to check that H1(Ỹ ,Z)→ H1(Y,Z) is injective,

and the dual map H1(Y )→ H1(Ỹ ) is surjective. We define the weight filtration by
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W0 = kerπ∗, W1 = H1(Y ). To make this more explicit, let us assume that Y has
simple normal crossings. This means that the irreducible components Y1, Y2, . . . are
smooth and they either meet each other in single point (local analytically) like the
x and y-axes in the plane or not all1. If Yi and Yj intersect in a point (with i < j)
we label it pij . Let us write qij (resp qji) for a copy of pij on Yi (resp Yj) in the

disjoint union Ỹ . We can keep track of the combinatorics by forming a graph Γ,
called the dual graph. The vertices are components, and they are joined by an edge
if the components meet. Let Σ = {pij} ⊂ Y be the set of double points. We have
a pair of maps

δ0, δ1 : Σ ⇒ Ỹ =
∐

Yi

Where δ0 (resp δ1) maps pij to qij (resp qji). We have a Mayer-Vietoris type
sequence

H0(Ỹ )→ H0(Σ)→ H1(Y )→ H1(Ỹ )

which shows that W0
∼= H1(Γ). Now W1/W0 = H1(Y ) carries a Hodge structure

and therefore subspace F 1. It turns out that there is a natural choice of subspace
F 1H1(Y ) ⊂ H1(Y ) which maps to the previous F 1. We give the construction. We
have a short exact sequence

0→ OY → π∗OỸ → CΣ → 0

The last map takes a collection of functions fi on Yi to fi(pij) − fj(pij). We can
form a sort of de Rham complex

OY → π∗Ω
1
Ỹ

Lemma 2.1. This resolves CY
Proof. It comes down to a diagram chase using

0

��

0

��
CY

��

// OY

�� ##
0 // π∗CỸ

��

// π∗OỸ

��

// π∗Ω1
Ỹ

// 0

CΣ

��

// CΣ

��
0 0

where the middle row and two columns are exact. �

The lemma implies

H1(Y,C) ∼= H1(Y,OY → π∗Ω
1
Ỹ

)

The image
F 1H1(Y ) = imH0(Y, π∗Ω

1
Ỹ

) = H1(Y,OY → π∗Ω
1
Ỹ

)

1There was some discussion about what “simple normal crossings” means, for now I use the
most restrictive sense, although this will be relaxed later.
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gives the desired space. The data of H1(Y ) and the filtrations W , F is called
the mixed Hodge structure. More formally, a mixed Hodge structure of type
{(1, 0), (0, 1), (0, 0)} is lattice HZ, a subspace W1 ⊂ HQ, and a subpsace F 1 ⊂ HC
such that F 1 ∩W1 = 0 and H/W1 with imF 1 is a Hodge structure in the previous
sense. A very nice alternative way of thinking about this will be given later.

Another consequence of the lemma is that H1(Y ) is the hypercohomology of the
total complex associated to the double complex

F 0 F 1

W0 π∗OỸ

��

// π∗Ω1
Ỹ

W−1 CΣ

This bigger complex allows us to see both F andW at level of complexes as indicated
(the indexing for W should be ignored for now).

3. 1-motives

Let Y be as in the previous section. One may ask what the mixed Hodge struc-
ture on H1(Y ). To answer this, form the (generalized) Jacobian

J(Y ) =
H1(Y )

F 1H1(Y ) +H1(Y,Z)

Since F 1 ∩W1 = 0, this fits into an exact sequence

0→W1/W1 ∩H1(Y,Z)→ J(Y )→ J(Ỹ )→ 0

The group on the right is an abelian variety, and on the left is a product of C∗’s.
Such a group is called a semiabelian variety. Using the exponential sequence, we
can identify J(Y ) = Pic0(Y ). We can reverse the above construction, and recover
the MHS on H1(Y ) from J(Y ). So in this sense, they are equivalent. More or less
the same reasoning shows that

Theorem 3.1 (Deligne). There is an equivalence between (the categories of) polar-
izable mixed Hodge structures of type {(1, 0), (0, 1), (0, 0)} and semiabelian varieties.

This can be extended slightly. We start with a motivating example, suppose that
U ⊂ Y is obtained by removing a finite set of smooth points D = {y0, . . . , yn}. Let
γi be a loop around yi. Then we have an exact sequence

〈γ0, . . . , γn〉 → H1(U,Z)→ H1(Y,Z)→ 0

Note that the kernel of first map is the subgroup generated by the relation
∑
γi = 0.

Dualizing gives

0→ H1(Y,Z)︸ ︷︷ ︸
W1

→ H1(U,Z)︸ ︷︷ ︸
W2

→ Zn−1 → 0

We extend the weight filtration as indicated. F 1 can also be extended. To sim-
plify the discussion, suppose that Y is smooth. Let Ω1

Y (logD) be the sheaf of
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meromorphic 1-forms with simple poles at the yi, and no other singularities. Then
F 1 = H1(Y,ΩY (log Y )). In the more general case, where Y has singularities,

F 1H1(Y ) = imH0(Y, π∗Ω
1
Ỹ

(log D̃)) = H1(Y,OY → π∗Ω
1
Ỹ

(log D̃))

where D̃ = π−1D. What we have is an integral two step filtration W•, a complex
subspace F 1 such that F 1 ∩ W1 satisfies earlier conditions, and F 1 mod W1 is
everything. Such a thing is called an MHS of type {(0, 0), (1, 0), (0, 1), (1, 1)}. Given
a such a polarized MHS H, we get a semiabelian variety J(W1H) = W1H/(F

1 ∩
H+W1HZ) as before. We have an isomorphism W1/F

1∩W1
∼= H/F 1. Thus we get

a projection HZ → J(W1H), which factors through the lattice Λ = W2HZ/W1HZ.
A semiabelian variety A, together with a homomorphism from a lattice α : Λ→ A,
is called a 1-motive.

Theorem 3.2 (Deligne). There is an equivalence between (the categories of) po-
larizable mixed Hodge structures of the type and 1-motives.

In our geometric example, A = J(Y ), Λ is the free abelian group generated by
differences yi − y0, and α is simply the Abel-Jacobi map restricted to this group.

4. Limit MHS

Let us suppose that f : X → ∆ is a (flat) family of projective curves with
exactly one singular fibre X0 = Y . We assume that this is reduced with (not
necessarily strict) normal crossings. After shrinking ∆, we can assume that Y ⊂ X
is a homotopy equivalence. Therefore we have a map

sp : H1(Y ) ∼= H1(X)→ H1(Xt)

for any t 6= 0, called specialization. This is almost never a morphism of mixed Hodge
structures, when H1(Xt) is given the standard Hodge structure. We can give it a
nonstandard mixed Hodge structure called the limit mixed Hodge structure, where
sp does become a morphism. To be clear, we point out we don’t actually work with
a particular H1(Xt), but a sort of idealized version of it, which is the cohomology

of the nearby fibre H1(RψQ) (which can be understood as H1(X×∆ ∆̃∗,Q), where

∆̃∗ is the universal cover of the punctured disk). These are isomorphic but not
canonically. For the moment however, we won’t worry about this.

As t→ 0, Xt may have several cycles δi, called vanishing cycles, which shrink to
points. By Poincaré duality, we view this as cohomology classes. If T denotes the
monodromy on H = H1(Xt), then the Picard-Lefschetz formula gives

Tα = α±
∑

(α · δi)δi

This implies that N = T − I satisfies N2 = 0. Let

M0 = imN,M1 = kerN,M2 = H

This called the monodromy weight filtration. A fact, which is more or less obvious,
is that N induces an isomorphism M2/M1

∼= M0. In higher dimensions, M is
characterized by a generalization of this property.

Theorem 4.1 (Schmid [S]). H1(Xt) (or more correctly H1(RψQ)) carries a mixed
Hodge structure such that the weight filtration is the monodromy filtration, and the
specialization map is a morphism.
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My attribution is bit misleading, since the main point of Schmid’s theorem is to
extend this to higher dimensions. The curve case was known before and is compar-
atively easy [G, §13]. In outline, one can choose a symplectic basis γ1, . . . , γ2g for
H1(Xt,Q), so that

Tγi =

{
γi +

∑h
j=1 Sijγg+j if i ≤ h

γi otherwise

for some h ≤ g and S a positive definite symmetric h × h matrix. Moreover,
F 1H1(Xt) is spanned by

αi(t) = γi +

g∑
j=1

Zij(t)γg+j

such that the period matrix has a block decomposition

Z(t) =

(
log t

2π
√
−1
S +A(t) B(t)

B(t)T C(t)

)

The matrices A(t), B(t), C(t) are holomorphic at t = 0, and C(t) is symmetric with
positive definite imaginary part. Thus C(t) lies in the Siegel upper half plane of
(g − h)× (g − h) matrices. One finds that on

M1/M0 = 〈γh+1, . . . , γg, γg+h+1, . . . , γ2g〉

the restriction of F 1H1(Xt) is the row space of the matrix (I, C(t)). This gives a
Hodge structure for all t, and in particular in the limit t = 0.

I will outline Steenbrink’s construction [St], again for curves. This is more geo-
metric. As first step, write

H1(Xt,C) = H1(Xt,OXt)⊕H1(Xt,Ω
1
Xt)

Both factors are g dimensional, where g is the genus. By flatness and Serre duality

dimH0(Y, ωY ) = dimH1(Y,OY ) = g

where ωY is the dualizing sheaf. Thus

H1(Y,OY )⊕H0(Y, ωY )

has the correct dimension and perhaps the right “feel”, but it is still far from
what we want. To go further, we need to use the geometry of X. By adjunction,
ωY ∼= Ω2

X(Y )|Y . We can write Ω2
X = Ω2

X(log Y ), which is locally given by Ω2
Y 〈dz1∧

dz2/z1z2〉 if Y = {z1z2 = 0}. We filter this by WkΩ•X(log Y ) by allowing at most k
zi’s in the denominator. In particular, W0Ω•X(log Y ) = Ω•X . Then the adjunction
isomorphism can be written as Ω2

X(log Y )/W0
∼= ωY . The remaining sheaf OY can

be resolved by logarithmic differentials

0→ OY
dt/t−→ Ω1

X(log Y )/W0
dt/t−→ Ω2

X(log Y )/W1 → 0
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Putting these together yields Steenbrink’s double complex A••:

F 1

0 // Ω1(log Y )/W0
d //

dt
t

��N

yy

Ω2(log Y )/W0

Nvv
0 // Ω2(log Y )/W1

where the differentials are marked with solid arrows. The operators N are given by
the projections up to sign.

Theorem 4.2 (Steenbrink). H1(Tot(A••)) ∼= H1(RψC), and the action of N on
the complex induces N on the cohomology on the right.

To build an MHS, we filter the complex by F 1 as indicated above, and

Mk = W2q+k+1Ωp+q+1
X (log Y )/Wq

The filtrations for the limit MHS are induced by F 1 in the obvious way, and by M•
with shift

Mk+1H
1(RψC) = H1(imMk)

To get some sense of what’s happening, let us compute M0. By definition it is

Ω1(log Y )/W0
//

��

W1Ω2(log Y )/W0

Ω2(log Y )/W1

Using Poincaré residue isomorphisms (which amounts to formally integrating out
the logarithmic terms) we can identify M0 with

π∗OỸ

��

// π∗Ω1
Ỹ

CΣ

This is exactly the complex we had before for computing the mixed Hodge structure
of Y . Moreover the F 1’s match, and M−1 maps to W−1 from before. Thus we really
are getting H1(Y ) = M1H

1(RψC) as mixed Hodge structures.
Finally, I should add that in order for the machinery2 to work, the underlying

rational structure needs to be constructed at the complex level as well. Steenbrink’s
original arguments were incomplete. But the correct construction was given in a
follow up paper [St2]. The idea is QX−Y is quasi-isomorphic to the complex

(OX−Y
e2πi→ O∗X−Y )⊗Q

To extend this across Y , let j : X −Y → X be the inclusion, andM = OX ∩ j∗O∗X
the sheaf of multiplicative monoids. The sheafM is basically a log structure in the
sense of Fontaine-Illusie-Kato [K]. Given a two term complex C0 → C1 of Q-vector

2The name of the machine is “cohomological mixed Hodge complex” [D, §8]
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spaces, the second symmetric power is the subcomplex of symmetric elements of
C• ⊗ C• or more explicitly

S2(C•) = S2C0 → C0 ⊗ C1 → ∧2C1

If Mgp is the group completion, then the symmetric power

K• = S2(OX
e2πi→ Mgp)⊗Q

gives a complex such thatK⊗C ∼= Ω•X(log Y ) in the derived category. One can put a
compatible filtration W on K. Then proceeding as above, we get a filtered complex
(A•,M) defined over Q which becomes filtered quasi-isomorphic to (Tot(A••),M)
after tensoring with C. Let me remark that with a bit more care, we can work
integrally. Also one doesn’t need the whole of X just the restriction of the log
structure to Y ; this is essentially first order information.

5. 1-motive of limit MHS

Keep the same notation as in the last section. The limit MHS is of type
{(0, 0), . . . , (1, 1)}, so it corresponds to 1-motive. I want to explain a nice description
of thus due to Hoffman [H]. For the semiabelian variety, we have no choice but to
take the generalized Jacobian J(Y ) = Pic0(Y ). For the lattice Λ, we take subgroup

of divisors D =
∑
nqq on Ỹ supported on Σ̃ = π−1Σ such that D has degree zero

on every component, and such that nq + nq′ = 0 whenever π(q) = π(q′). Note that
Λ ∼= H1(Γ,Z). The part that is a bit tricky is the homomorphism α : Λ → J(Y ).
α(D) should be a line bundle LD on Y . As a first step, LD would pull back to

the line bundle L̃D = OỸ (D) on Ỹ . To get LD, we need to glue the restrictions of

L̃D|Ỹi along the double points. So for each p ∈ Σ, we need to choose isomorphisms

between the fibres of L̃D at q and q′, whenever π(q) = π(q′). Thus the set of gluing
data is noncanonically a product of C∗’s. For single pair of points q, q′ such that
π(q) = π(q′), we have

Proposition 5.1 (Hoffman). For any singular point p, dimExt1(Ω1
Y,p,Op) = 1.

If q, q′ are distinct points such that π(q) = π(q′) = p, the set of nonzero elements
in the dual Ext1(Ω1

Y,p,Op)∗ can be canonically identified with set of isomorphisms

of the fibre of O(q) at q with the fibre of O(−q′) at q′.

An element of Ext1(Ω1
Y,p,Op) gives a rule for gluing O(q) with O(−q′) by taking

identities at the other pairs. This Ext also parameterizes the first order deforma-
tions of the singularities SpecOp [DM]. The first order deformations of Y are given
by Ext1(Ω1

Y ,OY ). The local to global spectral sequence gives a surjection

Ext1(Ω1
Y ,OY )→

⊕
p∈Σ

Ext1(Ω1
Y,p,Op)

Since our family X → ∆ gives a deformation of Y , the tangent vector ∂
∂t on ∆

gives an element of Ext1(Ω1
Y ,OY ). Its images in the local Ext’s are all nonzero

because all the singularities are smoothed. Therefore we get preferred bases for
these groups, and hence for their duals. This gives a rule gluing O(q) and O(−q′)
to obtain a line bundle which we define to be Lq−q′ on Y . Since any divisor D ∈ Λ
is a linear combination of divisors of the form q−q′. We can define LD by linearity.
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5.1. Comments/Questions.

(1) I haven’t really gone through Hoffman’s arguments, but I suspect that they
can be simplified, perhaps using later developments such log geometry.

(2) One reason for doing this is to extend the picture. Given a family X → ∆,
as before, with n sections σi in general position, one can ask whether there
is a limit for the mixed Hodge structures H1(Xt − {σ1(t), . . .}). Work of
Steenbrink and Zucker [SZ] shows that this can be done. This should be
governed by 1-motive as well, which should be constructed explicitly.

(3) The nice thing about 1-motives is that they are algebraic, so they make
sense over any field. In general, 1-motives posses `-adic realizations. Given
a family of curves over the spectrum of a Henselian DVR, this should tie in
with the existing of theory [Gr].
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