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X will stand for a smooth projective variety over C throughout these notes. To
simplify some statements, it will be convenient (but not essential) to also assume
that

(*) H2(X,Z) is torsion free.

To fix notation recall: The Picard variety Pic0(X) is the set of line bundles
with trivial first Chern class (the Chern class can be taken H2(X,C), since we are
assuming that H2(X,Z) is torsion free) This is an abelian variety of dimension
q(X) = dimH1(X,OX). Green and Lazarsfeld have introduced the cohomology
support loci

Si(X) = {L ∈ Pic0(X) | Hi(X,L) 6= 0}
along with certain variants. They proved the following amazing theorem [GL]:

Theorem 0.1 (Green-Lazarsfeld). Si(X) is a union of translates of abelian sub-
varieties.

Simpson later showed that these are in fact translates by points of finite order.
There are now several proofs of this theorem in addition to the original. I would

like to explain a couple of “topological” proofs, due to Simpson [S3] and the speaker
[A1]. I also want to say something about the nonabelian version of this in part II.

1. local systems

The first step is to find a topological version of Si(X). By a local system, we
mean a locally constant sheaf. Let X̃ → X denote the universal cover. Given
a representation ρ : π1(X) → GL(V ), we have a diagonal action of π1(X) on
V × X̃. Then we can form the local system Vρ of locally constant sections of
(V × X̃)/π1(X)→ X.

We have the standard fact:

Proposition 1.1. This construction yields an equivalence between the category of
finite dimensional representations of π1(X) and the category of local systems,

The set of rank one local systems is parameterized by the set of characters

Char(X) = Hom(π1(X),C∗)
Since we are assuming that H2(X,Z)tors = H1(X,Z)tors = 0. Char(X) is a prod-
uct of C∗’s or an affine torus (otherwise this is only true for the identity component).
The (topological) cohomological support locus is

Σi(X) = {ρ ∈ Char(X) | Hi(X,Cρ) 6= 0}
1



2 DONU ARAPURA

The topological analogue of theorem 0.1 is

Theorem 1.2. Σi(X) is a finite union of translates of subtori.

It is convenient to state a slight refinement.

Theorem 1.3.

Σim(X) = {ρ ∈ Char(X) | dimHi(X,Cρ) ≥ m}
is a finite union of translates of subtori.

This theorem implies theorem 0.1. I want to outline the argument. Given a
character ρ, let Lρ = OX ⊗C Cρ. This is a flat line bundle which means that it has
locally constant transition functions. Since c1(Lρ) can be written in terms of the
logarithmic derivatives of these functions, it must vanish, i.e. Lρ ∈ Pic0(X). The
map ρ 7→ Lρ coincides with the natural map

Char0(X) ∼= H1(X,C∗)→ H1(X,O∗X) = Pic(X)

For now, we will restrict our attention to unitary characters

Uchar(X) = Hom(π1(X), U(1))

which is a real torus by our assumption (*). From the diagram

0 // Z //

=

��

R e2πi //

��

U(1) //

��

1

0 // Z // O e2πi // O∗ // 1
we get

H1(X,Z) //

=

��

H1(X,R) //

∼=
��

Uchar(X) 0 //

L

��

H2(X,Z)

=

��
H1(X,Z) // H1(X,O) // Pic(X)

c1 // H2(X,Z)

The top rightmost horizontal map is zero since c1(Lρ) = 0. The second vertical
map is an isomorphism by Hodge theory. Therefore

Uchar(X) ∼= Pic0(X)

as real tori. So now we see that Σim(X)∩Uchar(X) has the required structure, but
it is still not clear what this has to do with Si(X). The missing ingredient, which
I will now explain, is Hodge theory with coefficients in a flat unitary bundle.

Lemma 1.4. There exists a unique differential operator ∇ : Lρ → Ω1
X ⊗ Lρ such

that ∇ is C-linear, satisfies the Leibnitz rule and ker(∇) = Cρ.

Locally Cρ ∼= C and ∇ is the exterior derivative d. It follows that we can extend
this to a resolution

0→ Cρ → Lρ
∇→ Ω1

X ⊗ Lρ
∇→ Ω2

X ⊗ Lρ . . .
Thus we get a spectral sequence

Epq1 = Hq(X,ΩpX ⊗ Lρ)⇒ Hp+q(X,Cρ)
By slight modification of the usual Hodge theoretic arguments, we have
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Theorem 1.5. When ρ is unitary, this degenerates at E1 i.e.

Hi(X,Cρ) ∼=
⊕
p+q=i

Hq(X,ΩpX ⊗ Lρ)

Proof. The connection ∇ extends to C∞ forms Γ(E• ⊗ Lρ) and its (0, 1) part is
∂̄. The left and right sides are given by H∗(Γ(E• ⊗ Lρ),∇) and H∗(Γ(E• ⊗ Lρ), ∂̄)
respectively. The Kähler identities extend to these operators and guarantee an
isomorphism of cohomology. �

Note that this is usually false for nonunitary ρ. We will come back this issue in
a bit. Define

Spqm (X) = {L ∈ Pic0(X) | dimHq(X,ΩpX ⊗ L) ≥ m}

Corollary 1.6.

Σim(X) ∩ Uchar(X) =
⋃

P
mp=m

Sp,i−pmp (X)

We are now in a position to prove a stronger form of theorem 0.1 modulo theorem
1.3.

Theorem 1.7 (Green-Lazarsfeld). All of these sets Spqm (X) are unions for trans-
lates of subabelian varieties.

Proof. Note that an algebraic subvariety of Pic0(X) is an abelian subvariety if and
only if it is a real subtorus. Therefore is suffices to show any irreducible component
V of Spqm (X) is a translate of a subtorus. Suppose that this is not the case for some
V . We can assume that m is maximal i.e. V * Spqm+1. Set i = p + q. If V is not
contained in any other Sa,i−a1 (X), with a 6= p, then we can find a neighbourhood U
of a general point of V disjoint from these Sa,i−a1 (X). Then a point x ∈ U ∩Σim(X)
would have to lie in V . Therefore V would be a component of Σim(X), leading
to a contradiction. In general, for each a, let ma ≥ 0 be the maximal value for
which V ⊆ Sa,i−ama (X). Set M =

∑
ma. Then V ⊂ ΣiM (X) can again be seen to be

component by similar argument. �

2. Higgs line bundles

As we saw unitary characters correspond to elements of Pic0, but what about
arbtrary characters ρ : π1(X) → C∗? We can decompose ρ as a product of an R+

character |ρ| and a unitary one ρ/|ρ|. Via the isomorphism

Hom(X,R+)
log→ H1(X,R) ∼= H0(X,Ω1

X)

we see that |ρ| corresponds to a 1-form. Thus we see that a ρ gives rise to a
Higgs1 line bundle, which is an element of the cotangent bundle T ∗Pic0(X) =
Pic0(X)×H0(X,Ω1

X). This correspondence sets up an isomorphism

(1) Char(X) ∼= T ∗Pic0(X)

as real Lie groups, but it is very far from an isomorphism of complex Lie groups. As
complex manifolds they are very different. The space on the left is Stein, whereas
the space on the right cannot be Stein since it has a nontrivial compact subvariety.

1Hitchin first introduced these kinds of objects into mathematics as analogues of the Yang-
Mills-Higgs fields from physics. So some authors refer to these as Hitchin pairs.
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Thus we have a C∞ manifold with different complex structures. This is unusual,
but not unprecedented. The quaternions H = R+Ri+Rj+Rk have several complex
structures, such as i and j. And in fact, this gives local model. More precisely, when
the tangent spaces of Char(X) are endowed with both complex structures, they
become an H-module. Kähler manifolds with this kind of quaternonic structure are
called hyper-Kähler.

Given a character ρ, let (Lρ, θ = θρ) denote the corresponding Higgs bundle.
Since θ2 = 0, we have complex

Lρ
θ→ Ω1

X ⊗ Lρ
θ→ Ω2

X ⊗ Lρ . . .
There is a very nice generalization of theorem 1.5 to nonunitary bundles.

Theorem 2.1 (Simpson [S2]).

Hi(X,Cρ) ∼= Hi(. . .Ω1
X ⊗ Lρ

θ→ Ω2
X ⊗ Lρ . . .)

Proof. This again comes down to an appropriate extension of the Kähler identities.
�

Corollary 2.2. Σi(X) is compatible with both complex structures coming from (1).

Corollary 2.3. Σi(X) is invariant under the C∗ action (L, θ) 7→ (L, tθ).

Both of these properties can be exploited to give a proof of theorem 1.3 by using
the either of the next two lemmas.

Lemma 2.4 (Deligne-Simpson). A closed subset of Char(X) holomorphic for both
complex structures is a union of translates of subtori.

Proof. The key point is that a function f which is holomorphic for both structures
is linear. This follows by observing that the second derivative H = (∂2f/∂xi∂xj)
viewed as a quadratic form must vanish identically:

ijH(u, v) = iH(u, jv) = H(iu, jv) = jH(iu, v) = jiH(u, v) = −ijH(u, v)

It’s fairly easy to deduce from this that the pullback of a “doubly holomorphic”
subset to the universal cover of Char(X) is union of linear subvarieties. �

For the second proof, note that when the t ∈ R+ ⊂ C∗ action on T ∗Pic0(X)
is transfered to Char(X) = (C∗)n, it can be written explicitly as (r1e

is1 , . . .) 7→
(r1e

its1 , . . .).

Lemma 2.5 (A). Then a Zariski closed subset of (C∗)n invariant under R+ is
necessarily a union of translates of subtori.

Proof. One checks that Zariski closures of orbits are translates of tori. �
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Part II

3. Higher rank bundles

As a first step toward formulating a nonabelian Green-Lazarsfeld theorem, we
need to replace Pic0(X) by the moduli space of vector bundles with trivial Chern
classes and rank r. Unfortunately, as Mumford discovered long ago, the moduli
space generally won’t exist as a scheme when r > 0. There are couple of ways
around this:

(1) Restrict the class of bundles so as to eliminate the pathologies, or
(2) work with something more general than a scheme like a stack.

Although stacks are no longer as obscure as they once were, I prefer to use
option (1). The good bundles are called stable. To simply things, I’ll concentrate
on the relevent case, where the Chern classes are trivial. A vector bundle V with
ci(V ) = 0 is stable if for any proper coherent subsheaf W ⊂ V , degW < 0 (the
degree is measured with respect to a fixed embedding X ⊂ PN ). If V is a unitary
flat bundle corresponding to an irreducible representation, then V is a stable vector
bundle with trivial Chern classes. This follows from the fact that the curvature of
V is zero and that it decreases for sub-bundles. This turns out to be the only kind
of example:

Theorem 3.1 (Narasimhan-Seshadri (dim = 1), Donaldson, Uhlenbeck-Yau). A
stable vector bundle with trivial Chern classes is unitary and flat.

The set of irreducbile representations π1(X)→ U(r) modulo conjugacy forms a
real algebraic variety Uchar(X, r). This can be given the structure of a complex
variety by identifying it with:

Theorem 3.2 (Mumford, Gieseker, Maruyama). The (coarse) moduli scheme M(X, r)
of stable bundles on X with rank r and ci = 0 exists.

Of course, M(X, 1) = Pic0(X), and we recover the earlier bijection Uchar(X, 1) ∼=
Pic0(X). In general, M(X, r) is a much more complicated space, even locally. The
infinitesimal properties can be studied in terms of deformations of V , which can
be thought of as a family of vector bundles Vε such that V0 = V . The underlying
C∞ bundle won’t change in a deformation. So we can view this as given by a
deformation of the Cauchy-Rieman operator

∂̄ε = ∂̄ + Φ(ε) = ∂̄ + εΦ′(0) + . . .

The first order deformation is determined by the endomorphism valued (0, 1)-form
φ = Φ′(0). Differentiating the integrability equation ∂̄2

ε = 0 shows that φ is ∂̄-
closed. Therefore it defines a class in H1(X,End(V )), and in fact:

Proposition 3.3. The Zariski tangent space of M(X, r) at V is H1(X,End(V )).

For M(X, r) to be smooth, we would need to know that tangent vectors extend
to (formal) arcs. In general, there are obstructions. Expanding ∂̄2

ε = 0 to second
order shows that

(2) [φ, φ] = 0

It follows thatM(X, r) won’t be smooth at V unless this holds for all tangent vectors
φ. In principle, there could be third and higher order obstructions. Remarkably,
these vanish:
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Theorem 3.4 (Goldman-Millson [GM], Nadel). M(X, r) has quadratic singulari-
ties. More precisely, the local analytic structure of this scheme is given by (2).

If V is unitary flat, we have an isomorphism

H1(X,End(V )) ∼= H0(X,Ω1
X ⊗ V )

by Hodge theory. If φ is a first order deformation satisfying (2), then θ = φ̄ ∈
H0(Ω1 ⊗End(V )) is element satisfying θ2 = 0. Such a pair (V, θ) is called a Higgs
bundle. As natural as this development sounds, this not how they first arose in
higher dimensions. Simpson wanted to extend the Narasimhan-Seshadri picture
to nonunitary representations. The key examples that gave the clues to such a
correspondence came from variations of Hodge structure. Given a family of smooth
projective varieties f : Y → X, the associated ith variation of Hodge structure [V]
is a package giving rise to the following data:

• A (generally nonunitary) monodromy representation π1(X)→ Aut(Hi(Yx)).
• A vector bundle V =

⊕
p+q=i

⋃
xH

q(Yx,Ωp) (more precisely V = ⊕Rqf∗ΩpY/X).
• An operator θ : Hq(Yx,Ωp) → Hq+1(Yx,Ωp−1) associated to cupping with

the Kodaira-Spencer class κ ∈ H1(Yx, T ). One has θ2 = 0.
Thus we get a picture

{VHS}

uukkkkkkkkkkkkkk

((QQQQQQQQQQQQQ

{Representations} oo ? //____________ {Higgs bundles}

{Unitary Representations}
?�

OO

oo // {stable vect. bundles}
?�

OO

The bottom arrow on the right sends V 7→ (V, 0). It’s not obvious that a dotted
arrow should exist, but that’s what was proved, at least after imposing stability
assumptions. In this setting, the Higgs field θ is exactly the datum encoding the
nonunitarity. For Higgs bundles, stability is defined by restricting to θ-invariant
subsheaves. A direct sum of stable Higgs bundles is called polystable. The key
result is what Simpson calls the nonabelian Hodge theorem:

Theorem 3.5 (Simpson [S2, S4]). The moduli space MHiggs(X, r) of polystable
rank r Higgs bundles with trivial Chern classes exists. There is a correspondence
between semisimple representations of π1(X) and stable Higgs bundles with trivial
Chern classses,. This gives a homeomorphism between MHiggs(X, r) and the space
Char(X, r) of conjugacy classes of rank r semisimple representations.

Remark 3.6. The special case of unitary rep. → (stable v.b., θ = 0) was pretty
direct. Unfortunately, in general the correspondence is quite complicated in both
directions, since it involves solving certain nonlinear PDEs. In one direction one
constructs a harmonic map, and in the other a Hermitian-Einstein metric. This
builds on earlier work of Corlette, Donaldson...

Remark 3.7. When r = 1, we had

MHiggs(X, 1) = T ∗Pic0(X) = Pic0(X)×H0(X,Ω1)
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There are partial analogues of this for r > 1. We can define the fake cotangent
bundle T ∗M(X, r) ⊂ MHiggs(X, r) as the locus of pairs (V, θ) where V is stable.
This maps to M(X, r) and coincides with the cotangent bundle over the smooth
locus. There is also a map generalizing the second projection when r = 1. This is
called the Hitchin map. Given (V, θ) the coefficients of the characteristic polynomial
can be interpreted as an element of H0(X,S∗Ω1

X). The Hitchin map

h : MHiggs(X, r)→
r⊕
i=1

H0(X,SiΩ1
X)

is given by the characteristic polynomial.

Theorem 3.8 (Simpson). h is proper.

Hitchin introduced and studied this map when X was a curve. The fibre over 0
contains M(X, r), while the general fibres are Jacobians of some other curves called
spectral curves. This allows one to get a handle on the structure of this space. This
also points the way to the desired result.

4. Cohomology support loci II

We can define Σim(X, r) as the locus

{L ∈ Char(X, r) | dimHi(X,L) ≥ m}

Let ΣiHiggs,m(X, r) denote the image of this set in MHiggs(X, r).

Theorem 4.1 ([A3]). Let Σ be an irreducible component of ΣiHiggs,m(X, r) with
reduced structure, and let Σ̃→ Σ denote its normalization. Then the general fibres
of the restriction of h to Σ̃ are abelian varieties.

Remark 4.2. Note that the theorem applies to the whole of MHiggs.

In addition to the ideas already discussed, a key tool is a result of Hitchin [H]
that h is a Lagrangian fibration when X is a curve. One then argues that this
property persists for hΣ̃. Thus by symplectic geometry, the nonsingular fibres are
tori.

Of course, this is just the first step. There are many more questions.
(1) What can one say about the singularities of these sets? (My conjecture is

that they’re quadratic c.f. [GM]).
(2) Are there good bounds on dimension similar to the rank one case? In other

words, are there good generic vanishing theorems?
(3) The statement involved moving to MHiggs(X, r). Is there a way to formu-

late things more topologically on Char(X, r)?
(4) It would be useful to allow boundary divisors. This is partially understood

for r = 1 [A2]. What about in general? (I think the time is ripe to work this
out, since Mochizuki [M] has made a recent breakthrough in understanding
the analytic issues in this situation)

(5) The natural conjecture here, which refines a conjecture of Simpson for
MHiggs and also what’s known for r = 1, is that Σim(X, r) should con-
tain “motivic” points, i.e. points corresponding to direct summands of
geometric variations of Hodge structures. This would be very hard!
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(6) All of this may be way too analytic for some people’s taste. So I would
like to point out there is a characteristic p proof of theorem 0.1, and there
are some algebraic analogues of Simpson’s stuff [F, OV]. Maybe, someone
should should study the higher cohomology support loci from this point of
view.
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