
PLANAR GRAPHS

DONU ARAPURA

(This material is a supplement to Sections 10.7-10.8 of Rosen’s book.)

1. Planar graphs

A curve is a subset of the plane of the form {(x, y) | x = f(t), y = g(t), 0 ≤ t ≤ 1},
where f and g are continuous functions. A graph is planar if it can be drawn in the
plane so that edges are represented by curves which don’t cross (except at vertices).
For example, we can see that the complete graph K4 is planar using second drawing,
even though the first drawing does have crossing edges.u1
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However, we will see that there is no way to draw K5 without crossings, so it
isn’t planar.

Given a planar graph, the plane is divided into disjoint regions bounded by the
edges. Let r be the number of these, including the outside. For example, in the
second drawing of K4, we have 3 triangles 123, 124, 134 plus the outside, so r = 4.
The cycle Cn is planar, with one inner region and one outer, so r = 2.

THEOREM 1.1 (Euler). If G is a connected planar graph with v vertices, e edges
and r regions, then

v − e+ r = 2

or equivalently

r = 2− v + e

I should probably point out that terms like “drawing” or “region” haven’t been
defined precisely. The proof given below will also use some intuitive arguments in a
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couple of places. However, a completely rigorous treatment would require a branch
of math called topology, which I don’t want to get into.

Proof. We prove this by induction on e. The base case e = 0 would mean G
consists of a single vertex, otherwise it wouldn’t be connected. Clearly r = 1 so
v − e+ r = 1− 0 + 1 = 2.

Now assume that the theorem holds for any connected graph with fewer than e
vertices. Choose an edge ε of G, with endpoints a, b, such that G remains connected
after removing it. Let G′ denote the new graph obtained from G by removing ε,
and possibly an end point a or b, if it becomes isolated, because we want G′ to be
connected. We can always relabel things so that a is the vertex removed. We refer
to this as the second case. The first case is where no vertices are removed.

b

a

b

a

Case 1
Case 2

Let v′, e′, r′ denote the number of vertices, edges and regions for G′. We have
e′ = e− 1. So by induction, we know that v′ − e′ + r′ = 2. We have v = v′ in the
first case. In this case, e will subdivide a region of G′. So removing e drops number
of regions to r′ = r − 1. So we obtain v − (e − 1) − (r − 1) = 2, which proves the
formula in the first case. In the second case, v′ = v − 1. In this case, e does not
subdivide a region of G′, so r′ = r. Therefore v− 1− (e− 1)− r = 2, which proves
what we want in the second case. �

COROLLARY 1.2. A tree (a connected graph with no simple circuits) satisfies
v = e+ 1.

Proof. There is one outer region and no interior regions, so r = 1. The result now
follows from Euler’s theorem. �

Given a planar graph G, the dual graph G∗, which is really a multigraph, has
vertices corresponding to regions of G. Two vertices of G∗ are connected by n edges
in G∗ if the regions have n edges in G as a common boundary. Also a vertex in G∗

has a loop for each bridge of G contained within the corresponding region. See figure
1. Recall that a bridge of G is an edge for which G would become disconnected
after deleting it. The degree of a region is the degree of the corresponding vertex
of G∗. In simple cases, when there no bridges in R, degR is the number of regions
adjacent to R, or equivalently the number of edges around the perimeter of R.
The number of vertices and edges of G∗ are v∗ = r and e∗ = e. The handshaking
theorem applied to G∗ tells us that
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Figure 1. Dual graph

THEOREM 1.3 (Handshaking theorem, version 2).∑
regions

degR = 2e

EXAMPLE 1.4. One can check that this holds for the graph in figure 1. The
degrees of A, B, C are 3, 8 and 3. For B, we have to remember that the loop
contributes 2 to its degree. These add up to 2e = 2(7)

As a corollary to Euler’s theorem, we have

THEOREM 1.5. If G is a connected simple planar graph with at least 3 vertices

e ≤ 3v − 6

Proof. Note that since each interior region R is at least a triangle, degR ≥ 3. This
also holds for the outer region because of the assumption about the number of
vertices (although this isn’t completely obvious). Therefore

2e =
∑

degR ≥ 3r

or

r ≤ 2

3
e

So that

2− v + e ≤ 2

3
e

Therefore
1

3
e ≤ v − 2

Now multiply by 3 to get the desired result. �

This can be used to show that certain graphs are not planar.

EXAMPLE 1.6. K5 is not planar because v = 5 and e =
(
5
2

)
= 10 is greater than

3v − 6.

K3,3 is also not planar, but the above test fails in the sense that the above
inequality holds. We can tweak the result to handle this.
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THEOREM 1.7. Suppose that G is a connected simple planar graph. Assume
that all cycles have length at least g and

v ≥ g

2
+ 1

then

e ≤ g(v − 2)

g − 2

When g = 3, we get

e ≤ 3v − 6

when v ≥ 3 as above.

Proof. If G is a tree, then e = v − 1.

v − 1 ≤ g(v − 2)

g − 2

is equivalent to

(g − 2)(v − 1) ≤ g(v − 2)

After rearranging terms, we get

2g − (g − 2) ≤ gv − (g − 2)v

A bit more algebra reduces this to

v ≥ g

2
+ 1

If G is not a tree, then any region R is borders a circuit. This means degR ≥ g
by assumption. Therefore

2e =
∑

degR ≥ gr
or

r ≤ 2

g
e

From Euler, we get

2− v + e ≤ 2

g
e

which simplifies to

e ≤ g

g − 2
(v − 2)

�

COROLLARY 1.8. If G has no cycles of length 3 and v ≥ 3, then

e ≤ 2v − 4

Proof. We can take g = 4 in the theorem.
�

EXAMPLE 1.9. We can now show that K3,3 is not planar. Since it has no
triangles, so we can apply the theorem with g = 4. We see that v = 6, e = 9 breaks
the inequality.

We can see that any graph which contains K5 or K3,3 is not planar. A theorem
of Kuratowski shows that this essentially the only way that a graph can fail to be
planar. The precise statement, but not the proof, can be found in Rosen.
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2. Regular polyhedra

Instead drawing the graph on the plane, we could draw it on the sphere. Using
stereographic projection, explained in class, we can see such a graph would be
planar. One way to get a graph on sphere is to take a polyhedron which is a sort of
3D polygon. The cube is the most familiar example. Some examples are pictured
below. The quantity r would be the number of faces or polygon sides in the picture.

Figure 2. tetrahedron

Figure 3. octahedron

Figure 4. dodecahedron



6 DONU ARAPURA

Figure 5. prism

The first three examples exhibit a high degree of symmetry, and the prism has
less. A polyhedron is called regular if the degree of each vertex is the same, and all
the faces have the same number of sides. The last condition means that the degree
of each region is the same. So it can be viewed as a property of planar graphs. The
first three examples are regular, but the prism isn’t. A classical theorem, which
was known to Euclid, is:

THEOREM 2.1. There are only five regular polyhedra up to isomorphism: the
tetrahedron (4 triangular faces), the cube (6 square faces), the octahedron (8 trian-
gular faces), the dodecahedron (12 pentagonal faces), or the icosahedron (20 trian-
gular faces).

Proof. We will prove weaker statement, that the type and number of faces is as
indicated. We are assuming that the degrees of vertices are a constant n and the
degrees of regions is another constant m. Both of these integers are at least 3. The
handshaking theorems imply

nv = 2e = mr

or

v =
2

n
e, r =

2

m
e

Plugging into Euler and simplifying gives

e(
1

n
+

1

m
− 1

2
) = 1

We must have
1

n
+

1

m
− 1

2
> 0

There are few possibilities. For instance if m,n ≥ 4, it will fail. So one of them,
say m = 3, then

1

n
+

1

3
− 1

2
=

1

n
− 1

6
> 0

so n = 3, 4, 5. In this way, we can see that there only five solutions (m,n) =
(3, 3), (3, 4), (3, 5), (4, 3), (5, 3). In the last case, when m = 5, n = 3

e(
1

5
+

1

3
− 1

2
) = 1

forces

e = 30, v =
2

3
e = 20, r =

2

5
e = 12
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This means there are 12 pentagons. This is the dodecahedron. One can work out
the other numbers to see that (3, 3) corresponds to a tetrahedron, (3, 4) to a cube,
(3, 5) to a icosahedron, and (4, 3) to an octahedron.

�

3. Five color theorem.

Given a map, what is the minimal number of colors need so that adjacent coun-
tries have different colors?

Answer: 4

We can translate this into a graph theory problem: given a graph G, the chro-
matic number χ(G) is the minimum number of colors so that adjacent vertices have
different colors. The following theorem was conjectured in the 1800s and the even-
tual solution involved a reduction to a finite, but large, number of cases checked by
computer in the 1970s.

THEOREM 3.1 (Appel-Haken). A planar graph has chromatic number at most
4.

We prove an easier version.

THEOREM 3.2. A planar graph has chromatic number at most 5.

Proof. We prove it by induction on the number of vertices. Suppose that G be the
planar graph. We claim that there is a vertex with degree at most 5. Suppose not.
Then all vertices have degree at least 6. Using the hand shaking theorem

e =
1

2

∑
deg(x) ≥ 3v

But this contradicts the previous inequality e ≤ 3v − 6 for planar graphs. This
proves the claim that there exists a vertex x with deg x ≤ 5. Let’s assume that
the degree is 5 for simplicity. Label the adjacent vertices x1, . . . , x5 in order as you
go around x. By induction, we can color G − x with five colors labelled 1, . . . , 5.
Let’s assume that xi is colored with color i. Let G13 be the subgraph colored with
colors 1 and 3. If x1, x3 lie on different connected components of G1,3. Then we
can change color 3 to 1 without affecting anything. Now color x with 3, and we are
done. We can argue with x2, x4 the same way. If they lie in different components
of G2,4, we can solve the problem as before.

There is one remaining case that x1, x3 lie on the same component of G1,3, and
x2, x4 will lie on the same component of G2,4. Then we can find a path P connecting
x1 and x3 lying in G1,3, and a path P ′ in G2,4 connecting x2 and x4. The paths P
and P ′ will have to cross somewhere (see figure 6 below). But this is impossible,
because points on P and P ′ must have different colors; 1 or 3 for P and 2 or 4 for
P ′.

�

In general, the chromatic number is hard to compute, but here a few easy cases:

EXAMPLE 3.3. We can see that χ(Kn) = n because any two vertices are adja-
cent, so they need different colors. Since K4 is planar, this shows that we can’t do
better than 4 colors.

EXAMPLE 3.4. If G is bipartite then χ(G) = 2 essentially by definition.
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Figure 6. 5 coloring theorem

EXAMPLE 3.5. If n is even, then χ(Cn) = 2 because we can alternate colors.
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