
Chapter 4

Fibre products

4.1 Universal properties

In classical geometry, we can take the product of varieties simply to be the
cartesian product. The identification An

k ⇥ Am
k = An+m

k shows that this is a
reasonable thing to do. However, with schemes we redefine

An
k = Spec k[x1, . . . , xn]

and the cartesian product no longer works even as sets!
We have to understand what the product really means. Let us start with

sets X,Y , the product is a new set X⇥Y with projections p1 : X⇥Y ! X and
p2 : X ⇥ Y ! Y which is universal in the sense that given any other set Z with
projections q1 : Z ! X, q2 : Z ! Y , we have a unique map f : Z ! X ⇥ Y ,
namely f(z) = (q1(z), q2(z)), such that

Z
q2 //

q1

✏✏

f

##

Y

X X ⇥ Y
p1

oo

p2

OO

commutes. This can be used to define the product in any category. Note
that there is no guarantee that the product exists, but it will be unique up to
isomorphism if it does. Here a few examples.

Example 4.1.1. The product in the category of groups is simply the usual
product.

Example 4.1.2. The product in the category of topological spaces is the carte-
sian product with its product topology.

There are no surprises here, so this is reassuring. Let us consider a slightly
less familiar example. Given a set S, we can form a new category of “sets over
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S”. The objects are pairs (X, f) consisting of a set and a map f : X ! S. The
morphisms (X, f) ! (Y, g) are maps h : X ! Y such that f = g � h. Given
(X, f) and (Y, g), their product in this new category is given by fibre product,
or pullback,

X ⇥S Y = {(x, y) 2 X ⇥ Y | f(x) = g(y)}
together with map (x, y) 7! f(x). To get a feeling for this, let us look at some
special cases. Let S = {⇤} be a one element set. Every set X has a unique
map to S, namely the constant map (such an object is called terminal). Then
the fibre product is just the cartesian product. Next consider S arbitrary, but
Y = {⇤}. A map g : Y ! S is determined by choosing the value of ⇤, call this
s. Then

X ⇥S Y ⇠= f�1(s)

which is just the fibre of X over s. These example help explain the name. The
construction generalizes both the usual product and the fibre of a map.

Let’s take a look at the dual notion called the coproduct in some category.
This simply the product in the category with arrows reversed. More explicitly,
given objects X,Y , the coproduct (if it exists) is an object X

`
Y with mor-

phisms p1 : X ! X
`

Y and p2 : Y ! X
`

Y which is universal in the sense
that given X ! Z and Y ! Z there exists a unique morphism X

`
Y ! Z

making the obvious diagram commute. Here a few examples.

Example 4.1.3. The coproduct of sets X and Y , is the disjoint union X
`

Y .

Example 4.1.4. The coproduct of groups G,H is the free product G ⇤H. For
example the free product Z ⇤ Z is the free group on two letters. This is very
di↵erent from the product Z⇥ Z.

The dual of the fibre product = pullback is sometimes called the pushout.
For groups, the pushout exists and is given by the free product with amalga-
mation which I won’t explain if you don’t already know it. Here is the key
example.

Proposition 4.1.5. Let R be a commutative ring, and let S and T be commu-
tative R-algebras. This simply means that we fix ring homomorphisms R ! S
and R ! T . Then the pushout exists, and is given by tensor product S ⌦R T
viewed as an R-algebra.

Proof. We have R-algebra homomorphisms p1 : S ! S ⌦ T and p2 : T !
S ⌦ T given by p1(s) = s ⌦ 1 and p2(t) = 1 ⌦ t. Given an R-algebra P with
homomorphisms q1 : S ! P and q2 : T ! P , we need a unique homomorphism
h : S ⌦R ! P such that h � pi = qi. The homomorphism h : S ⌦R ! P given
by

h(
X

st ⌦ ti) =
X

q1(si)⌦ q2(ti)

does the trick (and is the only one).
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4.2 Fibre products of schemes

Theorem 4.2.1. Fibre products exist in the category of schemes.

Before proving this, let us understand some consequences. First of all, it
tells us that products exist. Since SpecZ is the terminal object in the category
of schemes. The product is X⇥Y = X⇥SpecZ Y . Secondly, given a point s 2 S
of a scheme, and a morphism f : X ! S, we want to put a natural scheme
structure on the preimage f�1s, which at moment is just a set. We proceed as
follows.The residue field k(s) is the residue field OS,s/ms of the local ring at s.
There is a canonical morphism Spec k(s) ! S such that the unique point on the
left maps to s. To define it, let SpecA be an a�ne open set containing it. Then
Spec k(s) ! S is the composite Spec k(s) ! SpecA ! S, where the first map
corresponds to the ring map A ! As ! k(s). Given a morphism f : X ! S,
the scheme theoretic fibre is the fibre product X⇥S Spec k(s). It is not yet clear
that the underlying set is f�1s so we will have come back to this later.

We outline the main ideas of the proof.
Step1: Since the category of a�ne schemes is equivalent to the opposite of

the category of commutative rings, then fibre products exist in the first category
because pushout exists in the second. More explicitly, if X = SpecA, Y =
SpecB, and S = SpecC, then X ⇥S Y = SpecA ⌦C B. This already tells us
that

An
k ⇥Spec k Am

k = Spec k[x1, . . . , xn]⌦ k[y1, . . . , ym]

= Spec k[x1, . . . , xn, y1, . . . ym] = Am+n
k

as we hoped.
Step 2: Suppose that Y , S are a�ne and that X is an open subscheme of an

a�ne scheme X̄. This means that X ⇢ X̄ is an open subset and the structure
sheaf of X is the restriction of OX̄ . Then X̄ ⇥S Y exists by step 1. Let X 0

denote the preimage of X under the projection X̄ ⇥S Y ! X̄. This is an open
set which can regard as an open subscheme. We have morphisms X 0 ! X and
X 0 ! Y which, as can be checked, satisfies the universal property of X ⇥S Y .
We can conclude that X ⇥S Y exists and is an open subscheme of X̄ ⇥S Y .

Before giving the third step, we have to explain the idea of gluing. Given
two sets U1 U2, with subsets U12 ⇢ U1, U21 ⇢ U2 and a bijection � : U12 ! U21,
we glue the sets as follows. Define the relation ⇠ on disjoint union U1

`
U2 by

x ⇠ y if �(x) = y. This generates an equivalence relation ⇡. More explicitly, if
we define �12 = �,�21 = ��1 and �11 = id, �22 = id. Then given x 2 Ui, y 2 Uj ,
x ⇡ y if and only if y = �ij(x). We can now glue by

U1 [� U2 = U1

a
U2/ ⇡

In principle, we can glue 3 or more sets Ui. The data we would need is a
collection of subsets Uij ⇢ Ui and bijections �ij : Uij ! Uji. We want to identify
x 2 Ui with y in Uj if and only if y = �ij(x) (which means in particular that
x 2 Uij). This forces the following identities called cocycle conditions �ii = id,
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�ji = ��1
ij , and �ik = �jk��ij where we are suppressing the restrictions symbols.

Given data satisfying the last condition, we can glue to form

X =
a

i

Ui/ ⇡

as before. This construction is quite flexible. It works if Ui is a collection
of topological spaces and �ij : Uij ! Uji are homeomorphisms between open
subsets. Then X will be a topological space, with the quotient topology. It also
works if we have locally ringed spaces (Ui,OUi) and isomorphisms

(�ij ,�
#
ij) : (Uij ,OUi |Uij )

⇠! (Uji,OUj |Uji)

The construction produces a new locally ringed space (X,OX). Now comes the
key observation, which is simply a restatement of the definition, any scheme
can be produced by applying the gluing construction to a collection of a�ne
schemes.

We need one more fact, whose proof will be left as an exercise.

Lemma 4.2.2. Let f : X 0 ! X, X ! S and Y ! S be morphisms in some
category. Then there is a morphism f ⇥S id : X 0 ⇥S Y ! X ⇥S Y such that

X 0

f

✏✏

X 0 ⇥S Y

✏✏

oo // Y

id

✏✏
X X ⇥S Yoo // Y

commutes.

We now return to the outline of the proof.
Step 3: We now suppose that S and Y are a�ne, but X is arbitrary. Let

X be obtained by gluing a�ne schemes Ui via �ij : Uij
⇠= Uji as above. By step

1 and 2, both Ui ⇥S Y and Uij ⇥S Y exist and the latter is an open subscheme
of the former. Then Ui ⇥S Y together with �ij ⇥S id : Uij ⇥S Y ! Uji ⇥S Y
gives gluing data. Gluing these together yields the scheme X ⇥S Y .

Steps 4, 5: Further gluing allows us to construct X ⇥S Y in general.

4.3 Fibres

Fix f : X ! S, recall that the fibre over s 2 S is X ⇥S Spec k(s). We often
write this as Xs. We should think of the morphism f : X ! S as the family
of the fibres Xs as s varies over S. We can replace S by a neighbourhood of
s, so we may as well take S = SpecR a�ne. Then s is a prime ideal of R,
and k(s) = Rs/sRs. If X = SpecA, then the scheme theoretic fibre is the
spectrum of A ⌦C k(s). As a set this consists exactly of the prime ideals of A
that contract to s in C. More generally if X is obtained by gluing a�ne schemes
Ui, the scheme theoretic fibre over s, is the union of the fibres of Ui over s.
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LetX = SpecR[x1, . . . , xn]/(f1(x), . . .). ThenXs = Spec k(s)[x1, . . . , xn]/(f̄i(x)),
where f̄i(x) denotes the image of fi(x). To give a better sense of this, let
R = k[y1, . . . , ym] where k is algebraically closed. We can think of fi as poly-
nomial in the x’s and y’s. A maximal ideal s (= closed point of SpecR) is
given by (y1 � a1, . . . , ym � am) and thus corresponds to a point a 2 Am

k . Then
Xs = k[x1, . . . , xn]/(fi(x, a)).

Given a ring R, we define

Ui = SpecR[
x0

xi
, . . .

xn

xi
]

Uij = D(
xj

xi
) = SpecR[

x0

xi
, . . . ,

xn

xi
, (
xj

xi
)�1]

The rings defining Uij and Uji are really the same. And thus we get isomor-
phisms Uij

⇠= Uji. So we can glue these together to get a scheme which is of
course Pn

R. The fibres of Ui over s 2 SpecR are isomorphic to the a�ne schemes
An

k(s). Gluing these yields the projective space Pn
k(s).
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