Chapter 5

Flat familes

5.1 Some pathologies

As we explained a morphism of schemes $f: X \to S$ should be viewed as a family of schemes X_s parameterized by S. However, it is possible that various fibres can have very different properties. The simplest measure of the complexity of a scheme is its dimension:

 $\dim X = \sup\{n \mid X_n \underset{\neq}{\supseteq} X_{n-1} \underset{\neq}{\supseteq} \dots X_0 \text{ is a chain of irreducible closed sets}\}$

Note that dim Spec R is exactly the Krull dimension of R. So by algebra, this implies that dim $\mathbb{A}_k^n = \dim k[x_1, \ldots, x_n] = n$ as we would expect. Consider the following example.

Example 5.1.1. Consider the projection Spec $k[x, y, z]/(y-zx) \rightarrow k[x, y]$. The fibre over (x - a, y - b) is

	$\operatorname{Spec} k = point$	when $a \neq 0$
ł	$\operatorname{Spec} 0 = \emptyset$	when $a = 0, b \neq 0$
	$\operatorname{Spec} k[z] = \mathbb{A}^1_k$	when $a = b = 0$

This means that the dimension can jump between $-\infty$, 0 and 1.

This is some sense typical. But our goal is to understand reasonable conditions where the dimension of the fibres don't jump.

5.2 Flatness

We start with some algebra. Let R be a commutative ring, and M, N R-modules. We can form a new module $M \otimes_R N = M \otimes N$, the pairing $(m, n) \mapsto m \otimes n$ is the universal R-bilinear form. In general $- \otimes N$ is right exact which means that if

$$0 \to M_1 \to M_2 \to M_3 \to 0$$

is exact, then

$$M_1 \otimes N \to M_2 \otimes N \to M_3 \otimes N \to 0$$

is exact and likewise if the order of M_i and N are switched. We say that N is flat if $-\otimes N$ is exact, or equivalently if

$$M_1 \otimes N \to M_2 \otimes N$$

is injective for every sequence. N is faithfully flat if it is flat and if $M \otimes N = 0$ implies that M = 0. (There other equivalent formulations in the literature but we won't use them.)

Example 5.2.1. A free module is faithfully flat. In particular, $R[x_1, \ldots, x_n]$ is faithfully flat over R. More generally a projective module (which can be taken to be direct summand of free module) is faithfully flat.

Example 5.2.2. The ring $N = S^{-1}R = R[S^{-1}]$ is flat as an *R*-module because tensoring an inclusion $M_1 \subset M_2$ with N is the same as $S^{-1}M_1 \subset S^{-1}M_2$. With trivial exceptions, N is not faithfully flat.

At the other extreme.

Example 5.2.3. If $I \subset R$ is a nonzero proper ideal, then R/I is not flat. In fact, if $0 \neq f \in I$, then $R/ann(f) \xrightarrow{f} R$ becomes 0 after tensoring by R/I.

Some sense of the geometric significance of faithful flatness can be gleaned from the next lemma.

Lemma 5.2.4. Let $A \to B$ be ring homomorphism, and suppose that B is flat as an A-module. Then B is faithfully flat if and only if Spec $B \to \text{Spec } A$ is surjective.

Proof. Suppose that B is faithfully flat. Let $p \in \text{Spec } A$. If $B \otimes_A k(p) = 0$ then k(p) = 0 by faithful flatness. But this is clearly impossible. Therefore the fibre $\text{Spec } B \otimes_A k(p) \neq \emptyset$.

Conversely, assume that the map on spectra is surjective. Let M be a nonzero A-module. If $p \in \operatorname{Spec} A$ is an associated prime, then M contains a submodule isomorphic to A/p. Let $q \in \operatorname{Spec} B$ lie over p. Then $M \otimes k(p) \neq 0$. Therefore $M \otimes k(q) \neq 0$ and consequently $M \otimes B \neq 0$.

The proof of the following localization property can be found for example in Matsumura, Commutative Ring Theory. It is essential for transferring this notion to schemes.

Theorem 5.2.5. An *R*-module is flat if and only if M_p is flat over R_p for each $p \in \text{Spec } R$.

Corollary 5.2.6. If B is a flat A algebra, and $P \in \text{Spec } B$ a prime lying over $p \in \text{Spec } A$. Then $A_p \to B_P$ is flat.

Proof. If $M_1 \to M_2$ is an injective map of A_p modules, then $M_1 \otimes (A_p \otimes B) \to M_2 \otimes (A_p \otimes B)$ is injective by the theorem. Localizing further to B_P won't affect injectivity.

Lemma 5.2.7. If $A \to B$ is local homomorphism of noetherian local rings and B is flat over A, then B is faithfully flat.

Proof. Let M be an A-module such that $M \otimes_R B = 0$, we have to show that M = 0. If $M \neq 0$, then it contains a nonzero finitely generated submodule M'. We have $M' \otimes_R B \subset M \otimes_R B = 0$ by flatness. Thus we can reduce to the case where M is finitely generated. Let $m \subset A$ and $n \subset B$ denote the maximal ideals. We have B/n is a field extension of A/m because the map is local. Then $M \otimes B = 0$ implies that $M \otimes B/n = 0$ and therefore that $M \otimes A/m = 0$.

The following "going down" theorem for flatness, will be needed later.

Theorem 5.2.8. Suppose that $A \to B$ is a faithfully flat A-algebra. Given any pair of prime ideals $p \subset q \in \text{Spec } A$ and a prime ideal $Q \in \text{Spec } B$ lying over q, there exists a prime $P \subset Q$ with P lying over p.

Proof. By the previous results $A_q \to B_Q$ is faithfully flat. Therefore Spec $B_Q \to$ Spec A_q is surjective. So we can find a prime Q' lying over pA_q . Then $Q = Q' \cap A$ will do the job.

5.3 Finite flat maps

An extension of rings $A \to B$ is called integral or finite, if B is finitely generated as an *A*-module. A morphism of schemes $f: X \to Y$ is called finite if there exists an affine cover $\{U_i\}$ of Y such that $f^{-1}U_i$ is affine and the morphism $f^{-1}U_i \to U_i$ is induced by a finite morphism of rings.

Proposition 5.3.1. If $f: X \to Y$ is finite then the fibres are finite as sets.

Proof. We can assume that this is induced by finite homomorphism $A \to B$. Then $B \otimes_A k(p)$ is necessarily finite dimensional over k(p) and therefore Artinian. This implies that it has only finitely many prime ideals (cf Atiyah-Macdonald).

The converse is not true. For example, open immersions (= inclusions of open subschemes) have finite fibres but are almost never finite. The weaker property of having finite fibres is called "quasi-finiteness". The dimension dim $B \otimes_A k(p)$ can be thought of the number of points of $f^{-1}(p)$ counted with multiplicity.

Theorem 5.3.2. Let A be noetherian domain. Given a finite flat map $A \rightarrow B$, the number of points of the fibres counted with multiplicity is constant.

The statement is not true without flatness.

Exercise: Let $A = k[x, y]/(y^2 - x^2(x+1))$ be a node, B = k[t] and $A \to B$ given by $x \mapsto t^2 + 1, y \mapsto z(z^2 - 1)$. Check that this is finite but conclusion of the theorem fails, so this cannot be flat.

The proof will follow from the next proposition. For this, we introduce a bit of homological algebra. We omit proofs which can be found in just about any book on the subject. Given a pair of A-modules M, N, we have a new module $Tor_1^R(M, N) = Tor_1(M, N)$ with the following properties:

- 1. It is functorial in both variables.
- 2. It is symmetric $Tor_1(M, N) \cong Tor_1(N, M)$.
- 3. Given an exact sequence

$$0 \to M_1 \to M_2 \to M_3 \to 0$$

there is an exact sequence

$$\dots Tor_1(M_3, N) \to M_1 \otimes N \to M_2 \otimes N \dots$$

4. N is flat if and only if $Tor_1(-, N) = 0$ identically.

Proposition 5.3.3. A finitely generated module over a noetherian local ring A is flat if and only if it is free.

Proof. Let M be a finitely generated flat A-module. Let $\bar{m}_1, \ldots, \bar{m}_n$ be a basis for the vector space $M \otimes k$, where k is the residue field. Lift these to elements $m_i \in M$. These generate M by Nakayama's lemma. Therefore we have an exact sequence

$$0 \to S \to R^n \to M \to 0$$

where the second map sends the *i*th basis vector to m_i . Then

$$Tor_1(M,k) \to S \otimes k \to k^n \to M \otimes k \to 0$$

is exact. Flatness implies that $Tor_1 = 0$. Since the last map is an isomorphism, it follows that $S \otimes k = 0$. Therefore S = 0 by Nakayama's lemma.

Proof of theorem 5.3.2. By the previous proposition $B \otimes A_p$. Therefore dim $B \otimes k(p) = \dim B \otimes K$, where K is the field of fractions of A.

5.4 Dimensions of fibres

A morphism of schemes $f : X \to Y$ is said to be flat if the local ring $\mathcal{O}_{X,x}$ is flat over $\mathcal{O}_{Y,f(x)}$ for all $x \in X$. It is called faithfully flat if f is also surjective. A scheme is called noetherian if can be covered by finitely many spectra of noetherian rings. **Theorem 5.4.1.** Let $f : X \to S$ be a morphism of noetherian schemes. Then for any $x \in X$ let s = f(x), then we have

$$\dim \mathcal{O}_{X,x} \le \dim \mathcal{O}_{S,s} + \dim \mathcal{O}_{X,x} \otimes k(s)$$

Equality holds if f is flat.

In spite of the geometric language, the theorem is really a statement about local rings. It can be restated as follows.

Theorem 5.4.2. Suppose that $A \to B$ is a local homomorphism of noetherian local rings, with $m \subset A$ and $n \subset B$ the maximal ideals. Then

- 1. dim $B \leq \dim A + \dim B/mB$
- 2. If B is flat over A, then equality holds.

Given a local ring A with maximal ideal m, an ideal I is called m-primary if it contains a power of I. For example, m^n is m-primary. Here is a more interesting example.

Example 5.4.3. Let A be the localization of the cusp $k[x,y]/(y^2-x^3)$ at (x,y). Then (x) is m-primary.

The key result that we need from dimension theory is the following (see Atiyah-Macdonald, theorem 11.14)

Theorem 5.4.4. If A is a noetherian local ring. If (x_1, \ldots, x_e) is an m-primary ideal, then $e \ge \dim A$. There exists an m-primary ideal with exactly dim A generators.

If (x_1, \ldots, x_d) is *m*-primary with $d = \dim A$, we say that x_1, \ldots, x_d is a system of parameters.

Proof of theorem 5.4.2. Let $x_1, \ldots, x_a \in A$ be a system of parameters of A. Let $y_1, \ldots, y_b \in B$ be elements, whose images give a system of parameters in B/mB. Then $m^M \subset (x_1, \ldots, x_a)$ for some N, and $n^N \subset m + (y_1, \ldots, y_b)$ for some M, N. Thus $n^{MN} \subset (x_1, \ldots, x_a, y_1, \ldots, y_b)$. So these elements generate an *n*-primary ideal. This proves 1.

Now suppose that B is flat. Let $m = p_a \supset \ldots p_0$ be a strictly decreasing chain of primes of A. Let $P_{a+b} \supset \ldots P_a \supseteq mB$ be strictly decreasing chain of prime ideals of B. By theorem 5.2.8, we have can extend this to a chain

$$P_{a+b} \supset \ldots P_a \supset P_{a-1} \supset \ldots P_0$$

with $P_i \cap A = p_i$ for i < a. This proves the opposite inequality dim $B \ge \dim A + \dim B/mB$.

To appreciate what the theorem tells us, suppose that $A \to B$ is a faithfully flat homomorphism of affine domains over a field k. Let $f: X = \operatorname{Spec} B \to$ $S = \operatorname{Spec} A$ be the corresponding faithfully flat morphism of schemes. Choose $x \in \operatorname{Spec} B$ to be a maximal ideal, then s = f(x) is also maximal by the Nullstellensatz. The theorem together some basic dimension theory tells us that for any irreducible component Y of X_s through x,

$$\dim Y = \dim \mathcal{O}_{X,x} \otimes k(s) = \dim \mathcal{O}_{X,x} - \dim \mathcal{O}_{S,s} = \dim X - \dim S$$

This proves

Corollary 5.4.5. Suppose that $f: X \to S$ is a faithfully flat map of varieties (viewed as schemes). Then the irreducible components of the closed fibres all have the same dimension.

In fact, a much more general result is true. We refer to EGA IV $\S13$ and 14 for the proof which is a lot harder.

Theorem 5.4.6. Suppose that $f: X \to S$ is a morphism locally of finite type (which means that locally of the form $\operatorname{Spec} A[x_1, \ldots, x_n]/I \to \operatorname{Spec} A$). Then $s \mapsto \dim f^{-1}(s)$ is upper semicontinuous, i.e. $\{s \mid \dim f^{-1}(s) \geq N\}$ is closed. If S is noetherian and f is flat then all fibres have the same dimension.