
Chapter 5

Flat familes

5.1 Some pathologies

As we explained a morphism of schemes f : X ! S should be viewed as a family
of schemes Xs parameterized by S. However, it is possible that various fibres
can have very di↵erent properties. The simplest measure of the complexity of
a scheme is its dimension:

dimX = sup{n | Xn % Xn�1 % . . . X0 is a chain of irreducible closed sets}
Note that dimSpecR is exactly the Krull dimension of R. So by algebra, this
implies that dimAn

k = dim k[x1, . . . , xn] = n as we would expect. Consider the
following example.

Example 5.1.1. Consider the projection Spec k[x, y, z]/(y�zx) ! k[x, y]. The
fibre over (x� a, y � b) is

8
><

>:

Spec k = point when a 6= 0

Spec 0 = ; when a = 0, b 6= 0

Spec k[z] = A1
k when a = b = 0

This means that the dimension can jump between �1, 0 and 1.

This is some sense typical. But our goal is to understand reasonable condi-
tions where the dimension of the fibres don’t jump.

5.2 Flatness

We start with some algebra. LetR be a commutative ring, andM,N R-modules.
We can form a new module M ⌦R N = M ⌦ N , the pairing (m,n) 7! m ⌦ n
is the universal R-bilinear form. In general � ⌦ N is right exact which means
that if

0 ! M1 ! M2 ! M3 ! 0
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is exact, then
M1 ⌦N ! M2 ⌦N ! M3 ⌦N ! 0

is exact and likewise if the order of Mi and N are switched. We say that N is
flat if �⌦N is exact, or equivalently if

M1 ⌦N ! M2 ⌦N

is injective for every sequence. N is faithfully flat if it is flat and if M ⌦N = 0
implies that M = 0. (There other equivalent formulations in the literature but
we won’t use them.)

Example 5.2.1. A free module is faithfully flat. In particular, R[x1, . . . , xn] is
faithfully flat over R. More generally a projective module (which can be taken
to be direct summand of free module) is faithfully flat.

Example 5.2.2. The ring N = S�1R = R[S�1] is flat as an R-module because
tensoring an inclusion M1 ⇢ M2 with N is the same as S�1M1 ⇢ S�1M2. With
trivial exceptions, N is not faithfully flat.

At the other extreme.

Example 5.2.3. If I ⇢ R is a nonzero proper ideal, then R/I is not flat. In

fact, if 0 6= f 2 I, then R/ann(f)
f! R becomes 0 after tensoring by R/I.

Some sense of the geometric significance of faithful flatness can be gleaned
from the next lemma.

Lemma 5.2.4. Let A ! B be ring homomorphism, and suppose that B is flat
as an A-module. Then B is faithfully flat if and only if SpecB ! SpecA is
surjective.

Proof. Suppose that B is faithfully flat. Let p 2 SpecA. If B ⌦A k(p) = 0 then
k(p) = 0 by faithful flatness. But this is clearly impossible. Therefore the fibre
SpecB ⌦A k(p) 6= ;.

Conversely, assume that the map on spectra is surjective. Let M be a
nonzero A-module. If p 2 SpecA is an associated prime, then M contains a
submodule isomorphic to A/p. Let q 2 SpecB lie over p. Then M ⌦ k(p) 6= 0.
Therefore M ⌦ k(q) 6= 0 and consequently M ⌦B 6= 0.

The proof of the following localization property can be found for example
in Matsumura, Commutative Ring Theory. It is essential for transferring this
notion to schemes.

Theorem 5.2.5. An R-module is flat if and only if Mp is flat over Rp for each
p 2 SpecR.

Corollary 5.2.6. If B is a flat A algebra, and P 2 SpecB a prime lying over
p 2 SpecA. Then Ap ! BP is flat.
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Proof. If M1 ! M2 is an injective map of Ap modules, then M1 ⌦ (Ap ⌦B) !
M2⌦(Ap⌦B) is injective by the theorem. Localizing further to BP won’t a↵ect
injectivity.

Lemma 5.2.7. If A ! B is local homomorphism of noetherian local rings and
B is flat over A, then B is faithfully flat.

Proof. Let M be an A-module such that M ⌦R B = 0, we have to show that
M = 0. If M 6= 0, then it contains a nonzero finitely generated submodule M 0.
We have M 0 ⌦R B ⇢ M ⌦R B = 0 by flatness. Thus we can reduce to the
case where M is finitely generated. Let m ⇢ A and n ⇢ B denote the maximal
ideals. We have B/n is a field extension of A/m because the map is local.Then
M ⌦B = 0 implies that M ⌦B/n = 0 and therefore that M ⌦A/m = 0. So by
Nakayama’s lemma M = 0.

The following “going down” theorem for flatness, will be needed later.

Theorem 5.2.8. Suppose that A ! B is a faithfully flat A-algebra. Given any
pair of prime ideals p ⇢ q 2 SpecA and a prime ideal Q 2 SpecB lying over q,
there exists a prime P ⇢ Q with P lying over p.

Proof. By the previous results Aq ! BQ is faithfully flat. Therefore SpecBQ !
SpecAq is surjective. So we can find a prime Q0 lying over pAq. Then Q = Q0\A
will do the job.

5.3 Finite flat maps

An extension of rings A ! B is called integral or finite, if B is finitely generated
as an A-module. A morphism of schemes f : X ! Y is called finite if there
exists an a�ne cover {Ui} of Y such that f�1Ui is a�ne and the morphism
f�1Ui ! Ui is induced by a finite morphism of rings.

Proposition 5.3.1. If f : X ! Y is finite then the fibres are finite as sets.

Proof. We can assume that this is induced by finite homomorphism A ! B.
Then B⌦Ak(p) is necessarily finite dimensional over k(p) and therefore Artinian.
This implies that it has only finitely many prime ideals (cf Atiyah-Macdonald).

The converse is not true. For example, open immersions (= inclusions of
open subschemes) have finite fibres but are almost never finite. The weaker
property of having finite fibres is called “quasi-finiteness”. The dimension
dimB ⌦A k(p) can be thought of the number of points of f�1(p) counted with
multiplicity.

Theorem 5.3.2. Let A be noetherian domain. Given a finite flat map A ! B,
the number of points of the fibres counted with multiplicity is constant.
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The statement is not true without flatness.
Exercise: Let A = k[x, y]/(y2 � x2(x + 1)) be a node, B = k[t] and A ! B

given by x 7! t2 + 1, y 7! z(z2 � 1). Check that this is finite but conclusion of
the theorem fails, so this cannot be flat.

The proof will follow from the next proposition. For this, we introduce a bit
of homological algebra. We omit proofs which can be found in just about any
book on the subject. Given a pair of A-modules M,N , we have a new module
TorR1 (M,N) = Tor1(M,N) with the following properties:

1. It is functorial in both variables.

2. It is symmetric Tor1(M,N) ⇠= Tor1(N,M).

3. Given an exact sequence

0 ! M1 ! M2 ! M3 ! 0

there is an exact sequence

. . . T or1(M3, N) ! M1 ⌦N ! M2 ⌦N . . .

4. N is flat if and only if Tor1(�, N) = 0 identically.

Proposition 5.3.3. A finitely generated module over a noetherian local ring A
is flat if and only if it is free.

Proof. Let M be a finitely generated flat A-module. Let m̄1, . . . , m̄n be a basis
for the vector space M ⌦ k, where k is the residue field. Lift these to elements
mi 2 M . These generate M by Nakayama’s lemma. Therefore we have an exact
sequence

0 ! S ! Rn ! M ! 0

where the second map sends the ith basis vector to mi. Then

Tor1(M,k) ! S ⌦ k ! kn ! M ⌦ k ! 0

is exact. Flatness implies that Tor1 = 0. Since the last map is an isomorphism,
it follows that S ⌦ k = 0. Therefore S = 0 by Nakayama’s lemma.

Proof of theorem 5.3.2. By the previous proposition B⌦Ap. Therefore dimB⌦
k(p) = dimB ⌦K, where K is the field of fractions of A.

5.4 Dimensions of fibres

A morphism of schemes f : X ! Y is said to be flat if the local ring OX,x is
flat over OY,f(x) for all x 2 X. It is called faithfully flat if f is also surjective.
A scheme is called noetherian if can be covered by finitely many spectra of
noetherian rings.
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Theorem 5.4.1. Let f : X ! S be a morphism of noetherian schemes. Then
for any x 2 X let s = f(x), then we have

dimOX,x  dimOS,s + dimOX,x ⌦ k(s)

Equality holds if f is flat.

In spite of the geometric language, the theorem is really a statement about
local rings. It can be restated as follows.

Theorem 5.4.2. Suppose that A ! B is a local homomorphism of noetherian
local rings, with m ⇢ A and n ⇢ B the maximal ideals. Then

1. dimB  dimA+ dimB/mB

2. If B is flat over A, then equality holds.

Given a local ring A with maximal ideal m, an ideal I is called m-primary
if it contains a power of I. For example, mn is m-primary. Here is a more
interesting example.

Example 5.4.3. Let A be the localization of the cusp k[x, y]/(y2�x3) at (x, y).
Then (x) is m-primary.

The key result that we need from dimension theory is the following (see
Atiyah-Macdonald, theorem 11.14)

Theorem 5.4.4. If A is a noetherian local ring. If (x1, . . . , xe) is an m-primary
ideal, then e � dimA. There exists an m-primary ideal with exactly dimA
generators.

If (x1, . . . , xd) is m-primary with d = dimA, we say that x1, . . . , xd is a
system of parameters.

Proof of theorem 5.4.2. Let x1, . . . , xa 2 A be a system of parameters of A. Let
y1, . . . , yb 2 B be elements, whose images give a system of parameters in B/mB.
Then mM ⇢ (x1, . . . , xa) for some N , and nN ⇢ m+(y1, . . . , yb) for some M,N .
Thus nMN ⇢ (x1 . . . , xa, y1, . . . , yb). So these elements generate an n-primary
ideal. This proves 1.

Now suppose that B is flat. Let m = pa � . . . p0 be a strictly decreasing
chain of primes of A. Let Pa+b � . . . Pa ◆ mB be strictly decreasing chain of
prime ideals of B. By theorem 5.2.8, we have can extend this to a chain

Pa+b � . . . Pa � Pa�1 � . . . P0

with Pi \ A = pi for i < a. This proves the opposite inequality dimB �
dimA+ dimB/mB.
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To appreciate what the theorem tells us, suppose that A ! B is a faithfully
flat homomorphism of a�ne domains over a field k. Let f : X = SpecB !
S = SpecA be the corresponding faithfully flat morphism of schemes. Choose
x 2 SpecB to be a maximal ideal, then s = f(x) is also maximal by the
Nullstellensatz. The theorem together some basic dimension theory tells us
that for any irreducible component Y of Xs through x,

dimY = dimOX,x ⌦ k(s) = dimOX,x � dimOS,s = dimX � dimS

This proves

Corollary 5.4.5. Suppose that f : X ! S is a faithfully flat map of varieties
(viewed as schemes). Then the irreducible components of the closed fibres all
have the same dimension.

In fact, a much more general result is true. We refer to EGA IV §13 and 14
for the proof which is a lot harder.

Theorem 5.4.6. Suppose that f : X ! S is a morphism locally of finite type
(which means that locally of the form SpecA[x1, . . . , xn]/I ! SpecA). Then
s 7! dim f�1(s) is upper semicontinuous, i.e. {s | dim f�1(s) � N} is closed.
If S is noetherian and f is flat then all fibres have the same dimension.
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