
Chapter 6

Coherent Sheaves

6.1 Finite generation, finite presentation and co-
herence

Before getting to sheaves, let us discuss some finiteness properties for modules
over a commutative ring R. Recall that an R-module M is finitely generated,
or of finite type, if we can find a finite set {m1, . . . ,mn} ⇢ M such that every
element of M is an R-linear combination of the mi’s. This is equivalent to
having a surjective R-module homomorphism Rn ! M , where the ith standard
basis vector maps to mi. Recall that R is noetherian if every ideal is finitely
generated. This implies, and is equivalent to, the fact that a submodule of a
finitely generated module is finitely generated. If R is not noetherian, finite
generation is often too weak, so we introduce a stronger notion. A module M
is finitely presented if the following equivalent conditions hold.

Lemma 6.1.1. The following are equivalent:

(a) There is an exact sequence

Ra ! Rb ! M ! 0

(b) M is finitely generated and the kernel of any surjection Rn ! M is finitely
generated.

Proof. Assuming (a), M is clearly finitely generated. Let Rn ! M be another
surjection. We can construct the dotted arrow below

Ra

!!

// Rn

✏✏
M

inducing a map Rb onto kerRn ! M , which implies that it is also finitely
generated.
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M is coherent if it is finitely generated and all its finitely generated modules
are finitely presented. In particular, M is finitely presented. Over a noetherian
ring, coherence, finte presentation and finite generation are all the same thing,
but not in general. One nice feature of coherence is that it stable under going
to submodules. We also have the following important fact.

Theorem 6.1.2 (“2 out of 3” property of coherence). Let

0 ! M1 ! M2 ! M3 ! 0

be an exact sequence. If any two of Mi are coherent, then so is the third.

Proof. Suppose thatM2,M3 are coherent. We have to show thatM1 is coherent.
Since M1 is a submodule of M2, it is enough to show that it is finitely generated.
Then we have a surjection Ra ! M2. The kernel K of the composite Ra ! M3

is finitely generated by the previous lemma. We can see that K maps onto M1

so it is finitely generated.
Suppose that M1,M3 are coherent. We can see that if generating {m1, . . .}

and {n̄1, . . .} are generating sets ofM1 andM3 respectively, then {m1, . . . , n1, . . .}
generate M2, where the ni are lifts of n̄i. Therefore M2 is finitely generated.
Let N ⇢ M2 be a finitely generated submodule. We can assume that it is the
image of a map f : Rn ! M2. Consider the diagram

0 // 0 //

✏✏

Rn = //

f

✏✏

Rn //

g

✏✏

0

0 // M1
// M2

// M3
// 0

From the snake lemma, we get an exact sequence

0 ! ker f ! ker g ! M1

Since M3 is coherent, ker g is coherent and in particular finitely generated. Let
K denote its image in M1. The coherence of M1 implies the coherence of K.
Therefore applying the first part of the theorem to

0 ! ker f ! ker g ! K ! 0

shows that ker f is finitely generated.
The final step is to show that coherence of M1,M2 implies coherence of M3.

Since M3 is a quotient of M2, it is finitely generated. Given f : Rn ! M3, it
can be lifted to a map g : Rn ! M2. We can see that ker g maps onto ker f .
Therefore ker f is finitely generated.

Corollary 6.1.3. The direct sum of two coherent modules is coherent.

Corollary 6.1.4. If f : M ! N is a homomorphism between coherent modules,
im f, ker f, coker f are coherent.
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Proof. The image im f ⇢ N is coherent because it is a submodule of a coherent
module. Now apply the theorem to

0 ! ker f ! M ! im f ! 0

and
0 ! im f ! N ! coker f ! 0

Corollary 6.1.5. If R is coherent, then any finitely presented module is coher-
ent.

Corollary 6.1.6. The collection of coherent modules and arbitrary modules
forms an abelian subcategory of the category of all modules.

6.2 Coherent sheaves

Let (X,R) be a ringed space. An R-module M is coherent if

1. For any point x 2 X, there exists an open neighbourhood U such that
M(U) is finitely generated. One says that M is of finite type.

2. If for any open set U ⇢ X and morphism R|nU ! M|U , the kernel is of
finite type.

Theorem 6.2.1. The 2 out of 3 property holds for coherent RX-modules.

The argument is similar to the previous proof. We get the same corollaries
as before. We now turn to some basic examples. Let X ⇢ An

k be an a�ne
variety, with coordinate ring

R = O(X) ⇠= k[x1, . . . , xn]/I(X)

Given an R-module M , let

M̃(U) = M ⌦R OX(U)

This defines an OX -module. We have

M̃(D(f)) = M [1/f ]

Since the rings R[1/f ] = O(D(f)) are noetherian, we can conclude that:

Example 6.2.2. If M is finitely generated, then M̃ is coherent.

It is convenient to define a sheaf of form M̃ , where M is not necessarily
finitely generated to be quasicoherent.

Theorem 6.2.3. The operation M 7! M̃ induces an equivalence between the
category of all (respectively finitely generated) R-modules and the category of
quasicoherent (respectively coherent) OX-modules.
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A proof in the more general setting of schemes can be found in Harshorne,
chap II §5. (NB: the definition that Hartshorne gives for coherent sheaves is
correct only for noetherian schemes, otherwise you need to use the definition
here.) The equivalence is exact, i.e. it takes exact sequences to exact sequences.
Let Y ⇢ X be a subvariety. Then we have an exact sequence of finitely generated
modules

0 ! I ! O(X) = R ! O(Y ) ! 0

where I is the image of I(Y ) in R. Passing to sheaves gives an exact sequence
of coherent sheaves

0 ! IY ! OX ! OY ! 0

The sheaf IY is called the ideal sheaf of Y . IY (U) are regular functions on
U vanishing on Y \ U . The sheaf OY is the sheaf of regular functions on Y
extended to X. So OY (U) is the ring regular functions on Y \ U . (Using the
same symbol OY is a slight abuse of notation, but it won’t usually cause a
problem.)

Theorem 6.2.4 (Oka). Let X be a complex manifold, then the sheaf of holo-
morphic functions OX is coherent as an OX-module.

A proof can be found in any standard book on several complex variables
such as Hörmander. For example, if Y ⇢ X is complex submanifold. We define
the ideal sheaf IY as above, as the collection of holomorphic functions vanishing
on Y . Since Y is locally defined by finitely many equations, IY is of finite type.

Corollary 6.2.5. IY is coherent.

Corollary 6.2.6. A locally finitely presented OX-module is coherent.

6.3 Locally free sheaves

An R-module M is called locally free (of rank n) if there exists an open over
{Ui} such that M|Ui

⇠= R|ni
Ui

(with n = ni). If X is disconnected then the ranks
can be variable in principle, but we usually won’t allow this.

Given C1 manifold X, a rank n real vector is manifold V together with a
C1 map ⇡ : V ! X such that

1. The fibres ⇡�1(x) are n dimensional vector spaces.

2. There exists an open over {Ui} and di↵eomorphisms

⇡�1Ui
⇠ //

⇡

""

Ui ⇥ Rn

p1
{{

Ui

which are linear isomorphisms on the fibres. (This data is called a local
trivialization.)
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Example 6.3.1. Let S2 = {(x, y, z) 2 R3 | x2 + y2 + z2} be the 2-sphere. The
tangent bundle

TS2 = {(p, v) 2 S2 ⇥ R3 | v · p = 0}
which should be thought of as the union of the tangent planes, is a rank 2 vector
bundle. (Verifying axiom 2 will be left as an exercise.)

The following is easy.

Lemma 6.3.2. If ⇡ : V ! X is C1 manifold, then

Ṽ (U) = {v : U ! ⇡�1U | v C1,⇡ � v = id}

is a locally free C1-module.

When X is a complex manifold (or algebraic variety over k), a holomorphic
(algebraic) vector bundle can be defined similarly, by replacing R by C (or k)
and C1 by holomorphic (or regular). The above lemma holds, with the obvious
modifications, in these cases as well. In these cases, the locally free sheaves are
coherent. Here is a very important example.

Example 6.3.3. Recall that Pn
k is the set of one dimensional subspaces of V =

kn+1. Let
L = {(v, `) 2 V ⇥ Pn

k | v 2 `} ! Pn
k

This is called the tautological line bundle. A line bundle is the same as a rank
1 vector bundle. The sheaf of sections is denoted by OPn(�1).

In the case of a�ne varieties we have another characterization of locally free
sheaves.

Theorem 6.3.4. Let M be a finitely generated R-module, where X is an a�ne
variety and R = O(X). The following statements are equivalent

(a) M is a projective module i.e. a direct summand of a free module.

(b) Ext1R(M,N) = 0 for all N .

(c) M̃ is locally free

(d) The function m 7! dimk(m) Mm⌦Rk(m) is constant, as m 2 MaxR varies
and k(m) = R/m is the residue field.

(I’m too lazy to write this up, but the equivalence of (a), (b), (c) works
for a�ne noetherian schemes discussed briefly in class. You can even drop
noetherian provided that you assume M is finitely presented.)

Proof. If M �M 0 is free, then Ext1(M,N)� Ext1(M 0, N) = 0. So (a) implies
(b). Suppose (b) holds. Choose a surjection f : Rn ! M and consider the exact
sequence

0 ! K ! Rn ! M ! 0
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where K is the kernel. Homing M into this leads to an exact sequence (similar
to one we proved)

0 ! Hom(M,K) ! Hom(M,Rn) ! Hom(M,M) ! Ext1(M,K) = 0

This means that we can find an element s : M ! Rn such that f � s = id. In
other words, f splits, therefore M is a summand of Rn.

We need to collect a few more facts about Ext. First observe thatHomR(M,N)
has the structure of an R-module and that

HomR(F
i, N)f ⇠= HomRf (F

•
f , Nf )

where Mf = M [1/f ] etc. It follows that if F • ! M is a free resolution, then

ExtiR(M,N) = Hi(Hom(F •, N))

is also an R-module. Also localization is exact, so F •
f ! Mf is again a free

resolution. Therefore get the localization property

ExtiR(M,N)f ⇠= ExtiRf
(Mf , Nf ) (6.1)

Now suppose (c) holds. We want to show (b) i.e. that E = Ext1R(M,N) is
zero. Then we can choose an cover {D(fi)} so that Mfi is free. It follows that

Ext1R(M,N)f = Ext1Rfi
(Mfi , Nfi) = 0

Since Ẽ is a sheaf, this forces E = 0.
At this point, we need the following fact, which is a consequence of Nakayama’s

lemma:

Lemma 6.3.5. Given m 2 MaxR, k(m) = R/m and K the field of fractions
of Rm or equivalently R. Then

dimM ⌦K = dimMm ⌦K � dimMm ⌦ k(m) = dimM ⌦ k(m)

with equality if and only of Mm is free.

Using this, we get that (c) implies (d). Conversely, suppose that (d) holds.
Let m ⇢ R be a maximal ideal corresponding to a point a 2 X. Then from the
lemma and (d), we see that Mm is free. Let mi/fi 2 Mm be a basis. Since this
is a finite set, we can choose the same denominator f =

Q
fi. If follows that

Mf is free. Note that a 2 D(f). So by varying a, we can see that M is locally
free.

Suppose (a) holds. By assumption M �M 0 = Rn. Then

n = dimMm ⌦ k(m) + dimM 0
m ⌦ k(m)  dimMm ⌦K + dimMm ⌦K = n

This forces Mm (and M 0
m) to be free, so dimMm ⌦ k(m) = dimM ⌦K.
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6.4 Di↵erentials

Given an a�ne variety X with coordinate ring R, the R-module of Kähler
di↵erentials ⌦R = ⌦1

R/k is generated by symbols df for f 2 R subject to relations

d(a1f1 + a2f2) = a1df1 + a2df2, d(f1f2) = f1df2 + f2df1

for ai 2 k, fi 2 R. This should be viewed as the module of regular 1-forms on
X.

Example 6.4.1. Let X = An
k , so that R = k[x1, . . . , xn], then ⌦R =

L
Rdxi

which is a free module of rank n.

Example 6.4.2. Let X = V (f) ⇢ An
k be hypersurface, then

⌦R =
M

Rdxi/h
X @f

@xi
dxii

Let m = ma, then

⌦R ⌦ k(m) ⇠= kn/h( @f
@x1

(a), . . .)i

Therefore ⌦R is locally free of rank n�1 if and only if the gradient ( @f
@x1

(a), . . .) 6=
0 for all a 2 X, or in others words if X is nonsingular.

To extend this notion to other varieties, we have to first define the dimension.
Given an a�ne variety, let dimX denote the transcendence degree of the field
of fractions of the coordinate ring R. Alternatively, this can be defined as the
Krull dimension of R. This is length of the maximal strictly increasing chain of
prime ideals

p0 ⇢ p1 ⇢ . . . pn

If X is an arbitrary irreducible variety dimX is the dimension of any nonempty
open a�ne set. The field of fractions of the coordinate ring of a nonempty
open a�ne set is independant of the set, and is called the function field k(X)
of X. Thus dimX is the transcendence degree of k(X). Elements of k(X) are
called rational functions on X. They are the algebraic version of meromorphic
functions.

Example 6.4.3. dimPn = dimAn = tr.deg.k(x1, . . . , xn) = n.

Theorem 6.4.4. For any algebraic variety, there exists a coherent sheaf ⌦1
X

such that ⌦1
X |U = ⌦̃R for any open a�ne subset U ⇢ X with coordinate ring R.

There a couple of ways to prove this. The most direct method is to choose
an a�ne cover {Ui}, use the above formula to define ⌦1

Ui
and then patch these

together. For patching to work, we need isomorphisms ⌦1
Ui
|Ui\Uj

⇠= ⌦1
Uj
|Ui\Uj

(subject to some further conditions called cocycle conditions). This is possible
because ⌦ is compatible with localization in the sense that

⌦S�1R
⇠= S�1⌦R
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(See Matsumura’s Commutative Algebra for a proof of the last fact.)
We call X nonsingular, if ⌦1

X is a locally free of rank dimX. For example,
Pn is nonsingular. Here is characterization in terms of local rings.

Theorem 6.4.5. X is nonsingular if and only if for all a 2 X, the local ring
OX,a is regular which means that the Krull dimension dimOX,a equals the vector
space dimension dimma/m2

a.

In outline, we can assume that X is a�ne with coordinate ring R. By
algebra, dimR = dimRm for any maximal ideal m = ma. Given r 2 Rm, we
can consider the image

dr 2 ⌦Rm ⌦ k(m) ⇠= ⌦R ⌦ k(m)

If r 2 m2, then we can write it as sum
P

figi, with fi, gi 2 m. Therefore

dr =
X

fi(a)dgi + gi(a)dfi = 0

Thus r 7! dr induces a map R/m2 ! ⌦R ⌦ k(m). Then the theorem reduces to
the following lemma

Lemma 6.4.6. The restriction of the above map gives an isomorphim m/m2 ⇠=
⌦R ⌦ k(m)

Suppose that M is a module over a ring R, then define the exterior power

^pM = M ⌦ . . .⌦M| {z }
p

/hm1 ⌦ . . .⌦mp �m1 ⌦ . . .mi+1 ⌦mi ⌦ . . .mni

The image of m1 ⌦ . . .⌦mp is denoted by m1 ^ . . .^mp. When M is free with
basis m1, . . . ,mn, ^pM is free with basis {mi1 ^ . . .mip | i1 < . . . ip}. If M is a
sheaf of modules, then ^pM is the sheafification of the presheaf U 7! ^pM(U).
This is locally free if M is. We define the sheaf of p-forms on a nonsingular
variety by ⌦p

X = ^p⌦1
X . We can define other linear algebra operations as well.

Given two OX -modules M,N , define M ⌦OX N is the sheafification of the
presheaf U 7! M(U)⌦O(U) N (U). And HomOX (M,N ) as the sheafification of
the presheaf U 7! HomO(U)(M(U),N (U)).

6.5 Divisors

We discuss the notion of divisors which is an older language than sheaves, and
in many ways more intuitive. It is still used very important.

Recall that a ring is a unique factorization domain (UFD), or factorial, if
it is an integral domain and any nonzero element is either a unit or a product
of irreducible elements, such that the product unique up to reordering and
multiplication by units. For example k[x1, . . . , xn] is a UFD. It is convenient to
recast this property in terms of prime ideals. A prime ideal p has height 1 if 0
and p are the only prime ideals contained in p. This equivalent to saying the
Krull dimension of the quotient is 1.
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Theorem 6.5.1. A noetherian domain is a UFD if and only if all height 1
prime ideals are principal.

Proof. Suppose that p ⇢ R is a height 1 prime in a UFD. Let f 2 P be a
nonzero element. Write f = uf1f2 . . . be product of a unit times irreducible
elements. At least one of these factors lie in p because p is prime. It can’t be
u, otherwise we would have p = R. So (fi) ✓ p. But (fi) is prime. Therefore
(fi) = p.

The proof of the converse is harder, and can be found in Matsumura’s Com-
mutative Algebra.

An important source of examples is provided by

Theorem 6.5.2 (Auslander-Buchsbaum, Serre). A regular local ring is a UFD.

Proof. See Matsumura.

Let X be a nonsingular algebraic variety. Suppose that D ⇢ X is an irre-
ducible subset such that dimD = dimX � 1. D is called an irreducible hyper-
surface or prime divisor. We can form the ideal sheaf ID of regular functions
vanishing along D. Just to make life more confusing, this is usually written as
OX(�D).

Theorem 6.5.3. Let D be a prime divisor. then OX(�D) is locally free sheaf
of rank one (also called an invertible sheaf, also often called a line bundle).

Proof. The local rings are regular and therefore UFDs. The stalk OX(�D1)a
is height 1 prime ideal in Oa. Therefore it is principal, and consequently free of
rank 1.

Given D as above and a 2 D, the ideal O(�D)a is principal. Choose a
generator f 2 Oa ⇢ k(X). This is called a local equation of D. Any function
g 2 k(X)⇤ can be written as ufm, where u 2 Oa is a unit. Set ordD(g) = m and
ordD(0) = 1. This is independant of f and u and measures the order of zero
or pole along D. We define OX(nD)(U) ⇢ k(X) to be set of rational functions
which are regular on U � D and satisfy ordD(g) � �n. More generally, we
introduce a formal finite sum

P
niDi, where ni 2 Z and Di are prime divisors.

This is called a (Weil) divisor. Let O(
P

niDi)(U) be sheaf of rational functions
satisfying ordDi(g) � �ni.

Lemma 6.5.4. O(
P

niDi) is a line bundle. There are isomorphisms

O(D + E) ⇠= O(D)⌦O(E)

and
O(�D) = Hom(O(D),O)

(The last operation is usually denoted by O(D)�1.)
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Proof. If fi is a local equation of Di. Let D =
P

niDi and E =
P

miDi, O(D)
is locally spanned by

Q
f�ni
i . Therefore it is a line bundle. The map which

sends
(
Y

f�ni
i )⌦ (

Y
f�mi
i ) !

Y
f�(ni+mi)
i

and
(
Y

f�ni
i )�1 !

Y
fni
i

are isomorphisms.

A central problem in algebraic geometry, that we will come back to, is:

Problem 6.5.5 (Riemann-Roch). Given a divisor D on a smooth projective
variety X, compute dimH0(X,O(nD)) as a function of n (these numbers are
finite).

The collection of divisors on X forms an abelian group Div(X). Given
f 2 k(X)⇤, set

div(f) =
X

D

ordD(f)D

where the sum runs over all divisors. In fact, it can be shown to be finite sum,
thus it defines an element of Div(X).

Lemma 6.5.6. ordD are valuations, and in particular homomorphisms k(X)⇤ !
Z. Therefore div : k(X)⇤ ! Div(X) is also a homomorphism.

The cokernel

Cl(X) = Div(X)/{div(f) | f 2 k(X)⇤}

is called the (divisor) class group of X. We have been tacitly assuming that X
is nonsingular. In fact, we can get by with a weaker assumption. A variety is
normal if all its local rings are integrally closed. Note that UFDs are integrally
closed, so nonsingular implies normal. The class group is defined for normal
varieties. We can use this to test the UFD property as follows.

Lemma 6.5.7. Suppose that X is a normal (e.g. nonsingular) a�ne variety
with R = O(X). Then R is a UFD if and only if Cl(X) = 0.

Proof. Suppose that R is a UFD. If D =
P

niDi 2 Div(X). The ideal of
the prime divisors Di are principal and therefore generated by fi 2 R. Then
div(

Q
fni
i ) = D.

Conversely if Cl(X) = 0, we can see that a height one prime must be prin-
cipal.

Exercise 15. Let X = V (y2�x(x�1)(x�2)) ⇢ A2
C be an a�ne elliptic curve.

Show that this is nonsingular, but that R = C[x, y]/(y2 �x(x� 1)(x� 2)) is not
a UFD. (Hint: either use the fact that y2 has two incompatible factorizations,
or show that (x, y) gives a height one nonprincipal prime ideal.) It follows that
Cl(X) 6= 0. In fact, we will see later that Cl(X) is uncountable.
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