Chapter 6

Coherent Sheaves

6.1 Finite generation, finite presentation and co-
herence

Before getting to sheaves, let us discuss some finiteness properties for modules
over a commutative ring R. Recall that an R-module M is finitely generated,
or of finite type, if we can find a finite set {mq,...,m,} C M such that every
element of M is an R-linear combination of the m;’s. This is equivalent to
having a surjective R-module homomorphism R™ — M, where the ith standard
basis vector maps to m;. Recall that R is noetherian if every ideal is finitely
generated. This implies, and is equivalent to, the fact that a submodule of a
finitely generated module is finitely generated. If R is not noetherian, finite
generation is often too weak, so we introduce a stronger notion. A module M
is finitely presented if the following equivalent conditions hold.

Lemma 6.1.1. The following are equivalent:
(a) There is an exact sequence
R* R - M—0
(b) M is finitely generated and the kernel of any surjection R™ — M is finitely
generated.

Proof. Assuming (a), M is clearly finitely generated. Let R™ — M be another
surjection. We can construct the dotted arrow below

R* - -~ R"

N

M

inducing a map R’ onto ker R® — M, which implies that it is also finitely
generated. O

36



M is coherent if it is finitely generated and all its finitely generated modules
are finitely presented. In particular, M is finitely presented. Over a noetherian
ring, coherence, finte presentation and finite generation are all the same thing,
but not in general. One nice feature of coherence is that it stable under going
to submodules. We also have the following important fact.

Theorem 6.1.2 (“2 out of 3” property of coherence). Let
0— My — My — M3z —0
be an exact sequence. If any two of M; are coherent, then so is the third.

Proof. Suppose that M, M3 are coherent. We have to show that M is coherent.
Since M; is a submodule of My, it is enough to show that it is finitely generated.
Then we have a surjection R* — M. The kernel K of the composite R* — M3
is finitely generated by the previous lemma. We can see that K maps onto M;
so it is finitely generated.

Suppose that M, M3 are coherent. We can see that if generating {m,...}
and {71, ...} are generating sets of M, and M3 respectively, then {m1,...,ny,...}
generate My, where the n; are lifts of n;. Therefore M, is finitely generated.
Let N C Ms be a finitely generated submodule. We can assume that it is the
image of a map f: R™ — M,. Consider the diagram

0 0 R" ——= R" 0
AN
0 M,y Moy Ms; 0

From the snake lemma, we get an exact sequence
0 — ker f — kerg — M,

Since M3 is coherent, ker g is coherent and in particular finitely generated. Let
K denote its image in M;. The coherence of M; implies the coherence of K.
Therefore applying the first part of the theorem to

0—>kerf >kerg— K —0

shows that ker f is finitely generated.

The final step is to show that coherence of M7, My implies coherence of Ms3.
Since Mj is a quotient of Mo, it is finitely generated. Given f : R™ — Mg, it
can be lifted to a map g : R — M,. We can see that ker g maps onto ker f.
Therefore ker f is finitely generated. O

Corollary 6.1.3. The direct sum of two coherent modules is coherent.

Corollary 6.1.4. If f : M — N is a homomorphism between coherent modules,
im f, ker f, coker f are coherent.
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Proof. The image im f C N is coherent because it is a submodule of a coherent
module. Now apply the theorem to

0—kerf-M-—>imf—0

and
0 —im f — N — coker f — 0

O

Corollary 6.1.5. If R is coherent, then any finitely presented module is coher-
ent.

Corollary 6.1.6. The collection of coherent modules and arbitrary modules
forms an abelian subcategory of the category of all modules.

6.2 Coherent sheaves

Let (X,R) be a ringed space. An R-module M is coherent if

1. For any point x € X, there exists an open neighbourhood U such that
M(U) is finitely generated. One says that M is of finite type.

2. If for any open set U C X and morphism R|}, — M|y, the kernel is of
finite type.

Theorem 6.2.1. The 2 out of 8 property holds for coherent R x-modules.

The argument is similar to the previous proof. We get the same corollaries
as before. We now turn to some basic examples. Let X C A} be an affine
variety, with coordinate ring

R=0(X) 2 klx,...,z,]/1(X)
Given an R-module M, let
M(U) =M ®r Ox(U)
This defines an O x-module. We have
M(D(f)) = M[1/f]
Since the rings R[1/f] = O(D(f)) are noetherian, we can conclude that:

Example 6.2.2. If M is finitely generated, then M is coherent.

It is convenient to define a sheaf of form M, where M is not necessarily
finitely generated to be quasicoherent.

Theorem 6.2.3. The operation M +— M induces an equivalence between the
category of all (respectively finitely generated) R-modules and the category of
quasicoherent (respectively coherent) Ox-modules.
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A proof in the more general setting of schemes can be found in Harshorne,
chap II §5. (NB: the definition that Hartshorne gives for coherent sheaves is
correct only for noetherian schemes, otherwise you need to use the definition
here.) The equivalence is exact, i.e. it takes exact sequences to exact sequences.
Let Y C X be a subvariety. Then we have an exact sequence of finitely generated
modules

0-I—=0X)=R—->0))—=0

where T is the image of I(Y') in R. Passing to sheaves gives an exact sequence
of coherent sheaves
0—=Zy - Ox - Oy =0

The sheaf Zy is called the ideal sheaf of Y. Zy (U) are regular functions on
U vanishing on Y NU. The sheaf Oy is the sheaf of regular functions on Y
extended to X. So Oy (U) is the ring regular functions on Y N U. (Using the
same symbol Oy is a slight abuse of notation, but it won’t usually cause a
problem.)

Theorem 6.2.4 (Oka). Let X be a complex manifold, then the sheaf of holo-
morphic functions Ox is coherent as an Ox-module.

A proof can be found in any standard book on several complex variables
such as Hormander. For example, if Y C X is complex submanifold. We define
the ideal sheaf Zy as above, as the collection of holomorphic functions vanishing
on Y. Since Y is locally defined by finitely many equations, Zy is of finite type.

Corollary 6.2.5. Zy is coherent.
Corollary 6.2.6. A locally finitely presented Ox-module is coherent.

6.3 Locally free sheaves

An R-module M is called locally free (of rank n) if there exists an open over
{Ui} such that M|y, = R[ (with n = n;). If X is disconnected then the ranks
can be variable in principle, but we usually won’t allow this.

Given C'*° manifold X, a rank n real vector is manifold V' together with a
C* map 7 : V — X such that

1. The fibres 7~!(x) are n dimensional vector spaces.

2. There exists an open over {U;} and diffeomorphisms

Ui x R™
\ /
i

which are linear isomorphisms on the fibres. (This data is called a local
trivialization.)
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Example 6.3.1. Let S? = {(z,y,2) € R3 | 2% + y* + 22} be the 2-sphere. The
tangent bundle
Ts> = {(p,v) € S* xR* | v-p =0}

which should be thought of as the union of the tangent planes, is a rank 2 vector
bundle. (Verifying aziom 2 will be left as an exercise.)

The following is easy.

Lemma 6.3.2. If 7:V — X is C* manifold, then
VU)={v:U—=aU|vC® rov=rid}
1s a locally free C'°°-module.

When X is a complex manifold (or algebraic variety over k), a holomorphic
(algebraic) vector bundle can be defined similarly, by replacing R by C (or k)
and C'* by holomorphic (or regular). The above lemma holds, with the obvious
modifications, in these cases as well. In these cases, the locally free sheaves are
coherent. Here is a very important example.

Example 6.3.3. Recall that P} is the set of one dimensional subspaces of V =
k"tl. Let
L={(v,) eV xP;|vel} >}

This is called the tautological line bundle. A line bundle is the same as a rank
1 vector bundle. The sheaf of sections is denoted by Opn(—1).

In the case of affine varieties we have another characterization of locally free
sheaves.

Theorem 6.3.4. Let M be a finitely generated R-module, where X is an affine
variety and R = O(X). The following statements are equivalent

(a) M is a projective module i.e. a direct summand of a free module.
(b) Exth(M,N) =0 for all N.
(¢) M is locally free

(d) The function m > dimy(,,) My, ®@rk(m) is constant, as m € MaxR varies
and k(m) = R/m is the residue field.

(I'm too lazy to write this up, but the equivalence of (a), (b), (¢) works
for affine noetherian schemes discussed briefly in class. You can even drop
noetherian provided that you assume M is finitely presented.)

Proof. If M & M’ is free, then Ext'(M,N) & Ext'(M’, N) = 0. So (a) implies
(b). Suppose (b) holds. Choose a surjection f : R™ — M and consider the exact
sequence

0—-K—=R"—-M—=0
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where K is the kernel. Homing M into this leads to an exact sequence (similar
to one we proved)

0 — Hom(M,K) — Hom(M,R") — Hom(M, M) — Ext'(M,K) =0

This means that we can find an element s : M — R"™ such that fos =1id. In
other words, f splits, therefore M is a summand of R™.

We need to collect a few more facts about Ext. First observe that Homp (M, N)
has the structure of an R-module and that

Homp(F',N)y = Hompg, (F},Ny)
where My = M1/ f] etc. It follows that if F'* — M is a free resolution, then
Extly(M,N) = H'(Hom(F*,N))

is also an R-module. Also localization is exact, so F ? — My is again a free
resolution. Therefore get the localization property

Batyp(M,N)y = Bxty (Mg, Ny) (6.1)

Now suppose (c) holds. We want to show (b) i.e. that E = Eath(M,N) is
zero. Then we can choose an cover {D(f;)} so that My, is free. It follows that

Bxtp(M,N)y = Exty (Mg, Ny,) =0

Since E is a sheaf, this forces E = 0.
At this point, we need the following fact, which is a consequence of Nakayama’s
lemma:

Lemma 6.3.5. Given m € MazR, k(m) = R/m and K the field of fractions
of R, or equivalently R. Then

dim M ® K = dim M,, ® K > dim M,,, ® k(m) = dim M ® k(m)

with equality if and only of M, is free.

Using this, we get that (c) implies (d). Conversely, suppose that (d) holds.
Let m C R be a maximal ideal corresponding to a point @ € X. Then from the
lemma and (d), we see that M,, is free. Let m;/f; € M,, be a basis. Since this
is a finite set, we can choose the same denominator f = [] f;. If follows that
M is free. Note that a € D(f). So by varying a, we can see that M is locally
free.

Suppose (a) holds. By assumption M ¢ M’ = R"™. Then

n = dim M,, ® k(m) + dim M,, ® k(m) < dim M,, ® K +dim M,, ® K =n

This forces M,, (and M],) to be free, so dim M,,, ® k(m) = dim M & K. O
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6.4 Differentials

Given an affine variety X with coordinate ring R, the R-module of Kéahler
differentials Qp = Q}% /k is generated by symbols df for f € R subject to relations

d(a1 f1 + az fo) = ardfy + azdfs,  d(fi1f2) = fidfz + f2dfy

for a; € k, f; € R. This should be viewed as the module of regular 1-forms on
X.

Example 6.4.1. Let X = A}, so that R = k[x1,...,2,], then Qr = @ Rdx;
which is a free module of rank n.

Example 6.4.2. Let X = V(f) C A} be hypersurface, then
of

of
Q > g {(=—— e
R @ ) = KL @),
Therefore Qg is locally free of rank n—1 if and only if the gradient (—gwfl (a),...)#

0 for all a € X, or in others words if X is nonsingular.

Let m = my, then

To extend this notion to other varieties, we have to first define the dimension.
Given an affine variety, let dim X denote the transcendence degree of the field
of fractions of the coordinate ring R. Alternatively, this can be defined as the
Krull dimension of R. This is length of the maximal strictly increasing chain of
prime ideals

Po Cp1C...pn

If X is an arbitrary irreducible variety dim X is the dimension of any nonempty
open affine set. The field of fractions of the coordinate ring of a nonempty
open affine set is independant of the set, and is called the function field k(X)
of X. Thus dim X is the transcendence degree of k(X). Elements of k(X) are
called rational functions on X. They are the algebraic version of meromorphic
functions.

Example 6.4.3. dimP" = dim A" = ¢r.deg.k(x1,...,2,) = n.

Theorem 6.4.4. For any algebraic variety, there exists a coherent sheaf oL
such that Q| = Qg for any open affine subset U C X with coordinate ring R.

There a couple of ways to prove this. The most direct method is to choose
an affine cover {U;}, use the above formula to define le and then patch these
together. For patching to work, we need isomorphisms Q%] lv.nu, = Q}Jj UinU;
(subject to some further conditions called cocycle conditions). This is possible
because () is compatible with localization in the sense that

Qg-1p = SilQR
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(See Matsumura’s Commutative Algebra for a proof of the last fact.)
We call X nonsingular, if Q% is a locally free of rank dim X. For example,
P" is nonsingular. Here is characterization in terms of local rings.

Theorem 6.4.5. X is nonsingular if and only if for all a € X, the local ring
Ox q is regular which means that the Krull dimension dim Ox , equals the vector
space dimension dimm,/m?.

In outline, we can assume that X is affine with coordinate ring R. By
algebra, dim R = dim R,, for any maximal ideal m = m,. Given r € R,,, we
can consider the image

dr € Qr, @ k(m) = Qr ® k(m)

If 7 € m?, then we can write it as sum Y fig;, with f;, g; € m. Therefore
dr = fia)dg; + gi(a)dfi =0

Thus 7 ~ dr induces a map R/m? — Qg ® k(m). Then the theorem reduces to
the following lemma

>~

Lemma 6.4.6. The restriction of the above map gives an isomorphim m/m?
Qr @ k(m)

Suppose that M is a module over a ring R, then define the exterior power

NM=M®..QM/(m &..0m,—miQ...Miy1 @M; ®...My)
N————
p

The image of m; ® ... ® my, is denoted by m; A ... Am,. When M is free with
basis my, ..., mp, APM is free with basis {m;, A...m;, [i1 <...ip}. f Misa
sheaf of modules, then AP M is the sheafification of the presheaf U — AP M(U).
This is locally free if M is. We define the sheaf of p-forms on a nonsingular
variety by Q5 = APQL. We can define other linear algebra operations as well.
Given two Ox-modules M, N, define M ®p, N is the sheafification of the
presheaf U — M(U) @) N (U). And Homo, (M, N) as the sheafification of
the presheaf U — Homou)(M(U),N(U)).

6.5 Divisors

We discuss the notion of divisors which is an older language than sheaves, and
in many ways more intuitive. It is still used very important.

Recall that a ring is a unique factorization domain (UFD), or factorial, if
it is an integral domain and any nonzero element is either a unit or a product
of irreducible elements, such that the product unique up to reordering and
multiplication by units. For example k[z1,...,2,] is a UFD. It is convenient to
recast this property in terms of prime ideals. A prime ideal p has height 1 if 0
and p are the only prime ideals contained in p. This equivalent to saying the
Krull dimension of the quotient is 1.
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Theorem 6.5.1. A noetherian domain is a UFD if and only if all height 1
prime ideals are principal.

Proof. Suppose that p C R is a height 1 prime in a UFD. Let f € P be a
nonzero element. Write f = ufifa... be product of a unit times irreducible
elements. At least one of these factors lie in p because p is prime. It can’t be
u, otherwise we would have p = R. So (f;) C p. But (f;) is prime. Therefore

(fi)=p
The proof of the converse is harder, and can be found in Matsumura’s Com-
mutative Algebra. O

An important source of examples is provided by
Theorem 6.5.2 (Auslander-Buchsbaum, Serre). A regular local ring is a UFD.
Proof. See Matsumura. O

Let X be a nonsingular algebraic variety. Suppose that D C X is an irre-
ducible subset such that dim D = dim X — 1. D is called an irreducible hyper-
surface or prime divisor. We can form the ideal sheaf Zp of regular functions
vanishing along D. Just to make life more confusing, this is usually written as

Ox(-D).

Theorem 6.5.3. Let D be a prime divisor. then Ox(—D) is locally free sheaf
of rank one (also called an invertible sheaf, also often called a line bundle).

Proof. The local rings are regular and therefore UFDs. The stalk Ox(—D1),
is height 1 prime ideal in O,. Therefore it is principal, and consequently free of
rank 1. U

Given D as above and a € D, the ideal O(—D), is principal. Choose a
generator f € O, C k(X). This is called a local equation of D. Any function
g € k(X)* can be written as uf™, where u € O, is a unit. Set ordp(g) = m and
ordp(0) = co. This is independant of f and u and measures the order of zero
or pole along D. We define Ox (nD)(U) C k(X) to be set of rational functions
which are regular on U — D and satisfy ordp(g) > —n. More generally, we
introduce a formal finite sum Y n;D;, where n; € Z and D; are prime divisors.
This is called a (Weil) divisor. Let O(>_ n;D;)(U) be sheaf of rational functions
satisfying ordp,(g) > —n;.

Lemma 6.5.4. O(>_n;D;) is a line bundle. There are isomorphisms
OD+E)=20O(D)®O(E)

and
O(—D) = Hom(O(D), O)

(The last operation is usually denoted by O(D)~1.)
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Proof. If f; is a local equation of D;. Let D =Y n;D; and E =Y m;D;, O(D)
is locally spanned by []f; ™. Therefore it is a line bundle. The map which

sends
AL e s -1
and
(H it Hfzm
are isomorphisms. O

A central problem in algebraic geometry, that we will come back to, is:

Problem 6.5.5 (Riemann-Roch). Given a divisor D on a smooth projective
variety X, compute dim H°(X,O(nD)) as a function of n (these numbers are
finite).
The collection of divisors on X forms an abelian group Div(X). Given
fek(X)" set
div(f) = _ordp(f)D
D

where the sum runs over all divisors. In fact, it can be shown to be finite sum,
thus it defines an element of Div(X).

Lemma 6.5.6. ordp are valuations, and in particular homomorphisms k(X )* —
Z. Therefore div : k(X)* — Div(X) is also a homomorphism.

The cokernel
ClU(X) = Div(X)/{div(f) | f € k(X)"}

is called the (divisor) class group of X. We have been tacitly assuming that X
is nonsingular. In fact, we can get by with a weaker assumption. A variety is
normal if all its local rings are integrally closed. Note that UFDs are integrally
closed, so nonsingular implies normal. The class group is defined for normal
varieties. We can use this to test the UFD property as follows.

Lemma 6.5.7. Suppose that X is a normal (e.g. nonsingular) affine variety
with R = O(X). Then R is a UFD if and only if CI(X) = 0.

Proof. Suppose that R is a UFD. If D = > n;D; € Div(X). The ideal of
the prime divisors D; are principal and therefore generated by f; € R. Then
div([1 /) = D.

Conversely if CI(X) = 0, we can see that a height one prime must be prin-
cipal. O

Exercise 15. Let X =V (y? —z(z—1)(z—2)) C A% be an affine elliptic curve.
Show that this is nonsingular, but that R = Clx,y]/(y? — x(x — 1)(z — 2)) is not
a UFD. (Hint: either use the fact that y* has two incompatible factorizations,

or show that (x,y) gives a height one nonprincipal prime ideal.) It follows that
Cl(X) #0. In fact, we will see later that CI(X) is uncountable.
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