
Chapter 1

Elliptic curves in a nutshell

1.1 Elliptic curves: elementary approach

Curves in the projective plane P2
C of degrees one and two are easy to understand.

So the first interesting case is three. For historical reasons, these are called
elliptic curves. More precisely, an elliptic curve is a nonsingular cubic in P2. We
can ask how many “degrees of freedom” do we have to choose such a curve. First
of all, a homogeneous cubic polynomial in x, y, z has 10 coe�cients. However,
any nonzero scalar multiple of a given polynomial determines the same curve.
So the count should be reduced to 10�1. Furthermore, we only care up to linear
change of variables. More formally, we want to divide out by PGL3, leaving
only 1 = 10 � 1 � 8 parameter for an elliptic curve. Of course, this discussion
was not rigorous, but it can be made so.

Theorem 1.1.1. After a linear change of variables, an elliptic curve (over C)
can be put into Weierstrass form, given by homogenizing

y2 = 4x3 � ax� b (1.1)

where a, b are constants such that

� = a3 � 27b2 6= 0

Proof. The reduction to
y2 = x3 +Ax+B

can be found in [Si, chap III, §1]. From here, a further linear change of the form
(x, y) 7! (cx, y), will put into Weierstrass form.

The significance of the shape of the right side of (1.1) will be clear shortly.
Note that � is the discriminant of the right side 4x3 � ax� b. So the condition
� 6= 0 is exactly the condition for this polynomial to have distinct roots. This
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is equivalent to the nonsingularity of the projective curve defined by (1.1). The
Weierstrass form is not unique. If a0 = c4a and b0 = c6b, then

y2 = 4x3 � a0x� b0

gives a curve isomorphic to (1.1) under the transformation (x, y) 7! (c2x, c3x).
This is in fact the only ambiguity. We can see that the quantity

j = 1728
a3

�

is invariant under such a transformation. (The normalization factor 1728 is
there by tradition, although unimportant for our purposes.) In fact, we have

Theorem 1.1.2. Two elliptic curves over C in Weierstrass form are isomorphic
if and only if their j-invariants coincide.

This makes precise what we said above.

1.2 Elliptic curves: analytic theory

We now give an analytic description. We recall that a lattice in C is a subgroup
spanned by a real basis.

Theorem 1.2.1. Any elliptic curve is isomorphic (as a Riemann surface) to
the quotient of C by a lattice. Conversely, any such quotient is an elliptic curve.

We will explain the idea of the proof of the converse statement in the last
theorem, referring to [Si] for details. Let say that two tori C/L and C/L0 are
isomorphic if there exists a nonzero c 2 C⇤ such that cL = L0.

Lemma 1.2.2. Any elliptic curve is isomorphic to one of the form E
⌧

=
C/L

⌧

, L
⌧

= Z+ Z⌧ , with Im ⌧ > 0.

This is elementary, but we give the proof, since we will need the notation
anyway.

Proof. Let
B = {(u, v) 2 C2 | u, v R-linearly independent}

be the set of real bases for C. It is easy to see that this has two connected
components

B+ = {(u, v) | Im (u/v) > 0}, B� = {(u, v) | Im (u/v) < 0}

which correspond to positively and negatively oriented bases. Clearly any lattice
is given by Zu + Zv, where (u, v) 2 B. By switching u, v, if necessary, we can
assume (u, v) 2 B+. Then Zu+Zv = v(Z+Zu/v) gives the desired isomorphism.
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We define the Weierstrass }-function by

}(z, ⌧) = }(z) =
1

z2
+

X

�2L,� 6=0

✓
1

(z � �)2
� 1

�2

◆
(1.2)

It is not hard to show that the terms are dominated by Const|z|/|�|3, and
consequently that

Proposition 1.2.3. The series converges uniformly on compact subsets to a
holomorphic function on C� L.

Clearly, } has poles at L.

Theorem 1.2.4. The Weierstrass function is periodic with respect to L in the
sense that

}(z + �) = }(z)

for � 2 L

Proof. By the previous proposition, we can di↵erentiate (1.2) term by term to
obtain

}0(z) = �2
X

�2L

✓
1

(z � �)3

◆

So clearly }0 is doubly periodic. Therefore

}(z + �) = }(z) + c(�)

for appropriate constants c(�). In particular, setting z = ��/2 shows that

}(�/2) = }(��/2) + c(�)

However, we can see directly from (1.2), that }(�z) = }(z). Therefore c(�) = 0.

An elliptic function (relative to L) is a meromorphic function on C which
is periodic with respect to L. The theorem shows that } is elliptic. An ellip-
tic function can be viewed a meromorphic function on C/L. From Liouville’s
theorem, we obtain

Proposition 1.2.5. An entire elliptic function is constant.

Theorem 1.2.6. The Laurent expansion of } at 0 is

}(z) =
1

z2
+

1X

k=1

(2k + 1)G2k+2z
2k

where the coe�cients, called Eisenstein series, are

G2k =
X

�2L�{0}

1

�2k
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Proof. This results from substituting

(z � �)�2 � ��2 = ��2[(1� z/�)�2 � 1]

=
1X

1

(k + 1)zk

�k+2

into (1.2).

Theorem 1.2.7.

(}0)2 = 4}3 � g2}
2 � g3

where
g2 = 60G4, g3 = 140G6

Sketch. Let
f(z) = (}0)2 � 4}3 � g2}

2 � g3

This is clearly elliptic, and the only possible poles are at points of L. However,
using the previous theorem we can calculate enough terms of the Laurent series
of f to conclude that f has no poles at 0 and f(0) = 0. It follows that f has no
singularities at all, and is therefore constant. So it must be identically 0.

We can now define a map C/L ! P2 given by

z 7!
(
[}(z),}0(z), 1] if z /2 L

[0, 1, 0] otherwise

Proposition 1.2.8. This is an embedding.

Proof. See [Si, pp 158-159].

Putting the above statements together, we see that C/L is a cubic in P2 as
claimed earlier.

One consequence of this representation of an elliptic curve as a torus, is that
we get a natural group law on it.

1.3 Analytic theory continued: theta functions

With an eye towards higher dimensions, we want to give a di↵erent method of
realizing the elliptic curve E = C/Z + Z⌧ as a projective curve. We need to
construct functions f

i

: E ! C such that p 7! [f0(p), . . . , fn(p)] 2 Pn is well
defined and gives an embedding. If we regard f

i

as functions from C ! C, these
would be quasiperiodic, in the sense that

f
i

(p+ �) = (some factor)f
i

(p), 8� 2 Z+ Z⌧
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where the factor in front is the same for all i and nonzero. The basic example
is Jacobi’s ✓-function. This is given by the Fourier series

✓(z, ⌧) =
X

n2Z
exp(⇡in2⌧ + 2⇡inz) =

X

n2Z
exp(⇡in2⌧) exp(2⇡inz)

Since ⌧ is fixed, we just view it as function of z for now. Writing ⌧ = x+iy, with
y > 0, shows that on a compact subset of the z-plane the terms are bounded by
O(e�n

2
y). So uniform convergence on compact sets is guaranteed, and we can

conclude that ✓ holomorphic. This is clearly periodic

✓(z + 1) = ✓(z) (1.3)

In addition it satifies the functional equation

✓(z + ⌧) =
X

exp(⇡in2⌧ + 2⇡in(z + ⌧))

=
X

exp(⇡i(n+ 1)2⌧ + 2⇡i(n+ 1)z � 2⇡iz � ⇡i⌧)

= exp(�⇡i⌧ � 2⇡iz)✓(z)

(1.4)

Conversely, if f(z) is a holomorphic function satisfying these equations, then
(1.3) yields a Fourier exansion

f(z) =
X

n

a
n

exp(2⇡inz)

and (1.4) produces recurrence conditions on the coe�cients. This can be used
to show that f(z) = a0✓(z). We get more solutions by relaxing these conditions.
Let N > 0 be an integer, and consider the space V

N

of holomorphic functions
satisfying

f(z +N) = f(z)

f(z +N⌧) = exp(�⇡iN2⌧ � 2⇡iNz)f(z)
(1.5)

By the first equation, any function in V
N

can be expanded in a Fourier series
(in powers of exp(2⇡i/N)), and the second equation yields recurrences which
shows that the coe�cients are determined by N2 of them. In other words:

Lemma 1.3.1. dimV
N

= N2.

A proof of this lemma can be found on pp 8-10 of [MT]. The discussion
there gives quite a bit more information that we recall. The conditions (1.5)
can be expressed as invariance under the operators

S
a

(f)(z) = f(z + a),

T
b

(f)(z) = exp(⇡ib2⌧ + 2⇡ibz)f(z + b⌧)

for a, b 2 NZ. For a, b 2 R, we have the following identities

S
a

S
b

= S
a+b

, T
a

T
b

= T
a+b
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S
a

T
b

= exp(2⇡iab)T
b

S
a

So they generate a nonabelian group H, called a Heisenberg group, which fits
into an exact sequence

1 ! U(1) ! H ! R2 ! 0

where the last map sends S
a

T
b

7! (a, b) and U(1) ⇢ C⇤ is the unit circle. A key
fact is:

Lemma 1.3.2. V
N

is stable under the operators S1/N and T1/N , and therefore
under the subgroup H 0

N

of H generated by these operators. This subgroup fits
into a sequence

1 ! µ
N

! H 0
N

! (
1

N
Z)2 ! 0

The action of H 0
N

on V
N

is trivial on the preimage of (NZ)2. Therefore the
action factors through a finite quotient H

N

of H 0
N

which, as an abstract group,
fits into an exact sequence

1 ! µ
N

! H
N

! (Z/N2Z)2 ! 0

Lemma 1.3.3. Given nonzero f 2 V
N

, it has exactly N2 zeros, counted with
multiplicities, in the parallelogram with vertices 0, N,N⌧, N+⌧ (where we trans-
late if necessary so no zeros lie on the boundary).

Proof. Complex analysis tells us that the number of zeros is given by the integral

1

2⇡i

Z

C1+C2+C3+C4

f 0(z)dz

f(z)

over the boundary of the parallelogram.

4

C1

C2

C3

C

Using f(z +N) = f(z), we obtain
Z

C2+C4

f 0(z)dz

f(z)
= 0

and from f(z +N⌧) = Const. exp(�2⇡iNz)f(z), we obtain
Z

C1+C3

f 0(z)dz

f(z)
= 2⇡iN2
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A function f 2 V
N

is quasi-periodic with respect to the lattice NL. If we
transform it to F (z) = f(Nz), then it become quasi-periodic with respect to L.

Once we choose a basis f
i

of V
N

, the map � : E ! PN

2�1 given by z 7! [F
i

(z)]
is well defined. Recall that we found a finite group H

N

which acts on V
N

, and
therefore on PN

2�1. This group also acts on E where the image (a, b) under the
homomorphism H

N

! (Z/N2)2 sends z 7! z + a/N2 + b⌧/N2. One checks by
a calculation [MT, p 13] that

Lemma 1.3.4. � is equivariant for these actions

Theorem 1.3.5. � : E ! PN

2�1 is an embedding.

Proof. Suppose that � is not one to one. Then F (z1) = �F (z01) for some z1 6= z01
in C/L, some � 2 C⇤, and all f 2 V

N

. By translation byH
N

, we can find another
such pair z2, z02 with this property, such that z1, z01, z2, z

0
2 are distinct. Choose

N2�3 additional points z3, . . . z
N

2�1 in C/L distinct from the previous choices.

We define a map V
N

! CN

2�1 by f 7! (F (z
i

)). Since dimV
N

= N2, we can
find a nonzero f 2 V

N

so that

F (z1) = F (z2) = F (z3) = . . . F (z
N

2�1) = 0

Notice that we are forced to also have F (z01) = F (z02) = 0 which means that f
has at least N2 + 1 zeros which contradicts the lemma.

A similar argument shows that the derivative d� is nowhere zero. Otherwise
we would have a point z1 such that F 0 has a zero at z1 for every f 2 V

N

.
Arguing as above, we would find a nonzero f 2 V

N

and points z1, . . . z
N

2�1,
such that F has zeros at the z

i

and double zeros at z1, z2. This again yields a
contradiction.

The embeddings produced this way are di↵erent from the previous method.
The smallest case is when N = 2. Then we get an embedding E into P3. One
can show that it an intersection of two quadrics. In general, we can always
guarantee that the image is algebraic by:

Theorem 1.3.6 (Chow). If X ⇢ Pn is a complex submanifold, then it auto-
matically a nonsingular projective algebraic variety.

1.4 Elliptic curves over arbitrary fields

Finally let us redo parts of the theory assuming Hartshorne level algebraic ge-
ometry.1 We now work over an arbitrary field k, which is not necessarily alge-
braically closed. An elliptic curve over k, is a smooth projective curve E over k,
of genus one, with a fixed k-rational point O. We will deduce the earlier descrip-
tion as a consequence. First, we should recall that the fundamental invariant of
a smooth projective curve is its genus g. Suppose that k is algebraically closed.

1
And if you haven’t read it, don’t worry about it too much. All of this material can be

understood with only basic AG, as in [Si].
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If X ⇢ PN is a smooth projective curve, let X 0 be its image under a general
linear projection PN 99K P2. Then X 0 ⇢ P2 has only nodes as singularities. The
genus is given by

g =
(d� 1)(d� 2)

2
� �

where d is the degree of X 0 and � is the number of nodes. So g = 1 when
X = X 0 is smooth of degree 3. Although this gives a method for calculating g,
it does not make a good definition, as it not obviously independent of the choice
of embedding. A more intrinsic definition is via sheaf cohomology

g = dimH1(X,O
X

) = dimH0(X,⌦1
X

)

where the last equality is a special case of Serre duality. This shows that g �
0, which wasn’t obvious from the last formula. When k = C, g can also be
identified with one half the first Betti number. This can be seen from the
Hodge decomposition.

Among other things, the genus enters into the statement of the Riemann-
Roch theorem, which we will recall. Let us suppose that k is algebraically closed
for simplicity, then a divisor D is a finite formal sum D =

P
n
i

p
i

, where p
i

are
points of X. Define the degree

degD =
X

n
i

The formalism works over nonalgebraically closed fields, but now p
i

are closed
points of X viewed as a scheme, and degD =

P
n
i

[k(p
i

) : k], where k(p
i

) are
the residue fields. If f is a nonzero rational function, the associated principal
divisor

div f =
X

ord
p

(f)p

where ord
p

(f) is the discrete valuation attached to p. If ! is a nonzero rational
di↵erential form, the canonical divisor

div! =
X

ord
p

(!)

In spite of the formal similarity canonical divisors are usually not principal. In
fact the degrees

deg(div f) = 0, deg(div!) = 2g � 2

are usually di↵erent. However, when g = 1, we do have equality. In fact, more
is true.

Lemma 1.4.1. When g = 1, ⌦1
X

⇠= O
X

and any canonical divisor is principal.

Proof. Since H0(⌦1
X

) 6= 0, we have a nonzero regular 1-form !. Note that
! has no poles, and since deg div! = 0, it has no zeros either. By identifying
H0(X,⌦1

X

) ⇠= Hom(O
X

,⌦1
X

), we can view ! as a nonzero morphismO
X

! ⌦1
X

.
The map is injective, because the kernel consists of functions f such that f! = 0.
Since for every p 2 X, !(p) 6= 0, we can express dx as multiple of !, where x is
local uniformizer. This implies that ! is surjective as well. Therefore ⌦1

X

⇠= O
X

,
and the second statement is an immediate consequence.
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We define a sheafO
X

(D), sometimes denoted by L(D), whose global sections
are

H0(X,O
X

(D)) ⇠= {f a rational function | ord
pif + n

i

� 0}
This means that div (f) + D is e↵ective in the sense that its coe�cients are
nonnegative. There are a few cases where this can be computed directly from
the definition. If D = 0, then H0(O

X

(D)) = H0(O
X

) consists of constant
functions (because X is projective). If D is nonzero with positive coe�cients,
then H0(O

X

(�D)), consists of constant functions vanishing somewhere, so that
H0(O

X

(�D)) = 0. For more general cases, we can use Riemann-Roch.

Theorem 1.4.2 (Riemann-Roch).

h0(O
X

(D))� h0(O
X

(K �D)) = degD + 1� g

where K is any canonical divisor and hi = dimHi.

This leads to another useful method for computing the genus.

Corollary 1.4.3. degK = 2g � 2

Proof. Apply Riemann-Roch when D = K.

Let us return to the case of an elliptic curve (E,O). Take D = nO (O not
0), where n is a positive integer. Then

h0(O
E

(nO))� h0(O
E

(K � nO)) = 1

Since K = 0, we can write the second term on the left as h0(O(�nO)), but this
is 0. Thus we can conclude that

h0(O
E

(nO)) = n

It follows that H0(O
E

(O)) = H0(O
E

) consists of just the constant functions.
This also implies that there exists a nonconstant f 2 H0(O(2E)) and a func-
tion g 2 H0(O(3O)) not in H0(O(2O)). We can also conclude that the seven
functions 1, f, f2, f3, g, g2, gf 2 H0(O(6O)) are linearly dependent. Using these
facts, it is not di�cult to show that the map p 7! (f(p), g(p)) extends to em-
bedding of E as a cubic in P2

k

. More generally:

Theorem 1.4.4. Suppose that D is a divisor of degree 3 or more, and f0, . . . fn 2
H0(E,O

E

(D)) is a basis. Then the map � : E ! Pn

k

given �(x) = [f0(x), . . . , fn(x)]
is an embedding.

Proof. This follows from [H, cor 3.2, p 308].

Recall that the class group Cl(X) of a smooth projective curve is the quotient
of the group of divisors by the subgroup of principal divisors. Since principal
divisors have degree 0, the degree homomorphism factors through Cl(X). Let
Cl0(X) = ker degCl(X) ! Z.
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Theorem 1.4.5. Let (E,O) be an elliptic curve. The map ↵ : E ! Cl0(E)
defined by ↵(p) = p�O is a bijection.

Proof. Suppose D is divisor of degree 0. By Riemann-Roch

h0(O(D +O)) = 1

Choose a nonzero function f 2 H0(O(D + O). div f is necessary of the form p
for some p 2 X. So that f 2 H0(O(D +O � p)) This implies that divisor class
of D and p�O are equal. Therefore ↵ is surjective.

Suppose that ↵(p) = ↵(q) and that p 6= q . Then p � q is principle. This
implies that there is a function f with simple pole at p and no other poles.
Viewing f as map f : E ! P1, we can see that this implies that f is degree 1.
So we are forced to conclude that E ⇠= P1 but this is impossible since the genera
are di↵erent. So ↵ is injective.

Corollary 1.4.6. E has the structure of abelian group in a natural way.

Without the word “natural”, the result would be quite useless. We can in-
terpret this to mean, that the group operations are connected to the structure
of E as an algebraic variety, in the sense that they are morphisms. We refer to
[Si] or other standard texts for an explanation or why this holds.

Let us return to case when k = C and reinterpret the theory of theta func-
tions in terms of divisors. Given V

N

as before, f 2 V
N

� {0} is not a function
on E = C/Z+Z⌧ . However, we can attach an e↵ective divisor D

f

to it by tak-
ing the divisor of zeros of f in a fundamental parallelogram as in lemma 1.3.3.
This lemma shows that degD

f

= N2. If g 2 V
N

is another nonzero function,
g/f is invariant and therefore a meromorphic function on E. We can see that
D

g

= D
f

+div (g/f), so that D
g

is linearly equivalent to D
f

. This tells us that
g/f 2 H0(E,O(D

f

)). So the map g 7! g/f gives an injective homomorphism,
which we can view as an inclusion

V
N

✓ H0(E,O(D
f

))

Since both sides have dimension N2, we must have equality. In particular,
theorem 1.3.5 follows from theorem 1.4.4. Finally, we note that there is even
an analogue of the Heisenberg group due to Mumford. We won’t get into that
here, but instead refer to his paper On the equations defining Abelian varieties
I, Inventiones 1966 for details.
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