
NOTES ON DIFFERENTIAL FORMS ON SINGULAR VARIETIES

DONU ARAPURA

1. Main results

This is a mostly expository account of some recent, and not so recent, work
on the topic in the title. A few observations in section 2 are perhaps new. Fix
a possibly singular reduced complex analytic space X. Assume that X has pure
dimension n, and that it is normal. Normality isn’t necessary in what follows, but
it does simplify some things. Let me start with the basic, although not very well
posed question.

Q1: What is a good notion of a holomorphic p-form on X?

Here are some possible answers:

A. A section of ΩpX = ∧pΩX .
B. A section of ΩpX/torsion.
C. A holomorphic p-form on the smooth locus U = Xreg.
D. A holomorphic p-form on some (or any) resolution of singularities.

Forms of type A, B, D give rise to forms of type C (for D ⇒ C, choose a resolu-
tion which is an isomorphism over U). I will mostly focus on relationship between
the last two types. Let me refer to forms of type A as Kähler, forms of type C as
reflexive, and forms of type D as resolvable. I will focus on the basic question.

Q2: When is a reflexive form resolvable?

It is good to also ask a local version of the question. Let j : U → X denote
the inclusion. Choose a resolution f : X̃ → X. Reflexive (resp. resolvable) forms
are global sections of j∗Ω

p
U (resp. f∗Ω

p

X̃
). Since X is normal, we can identify

j∗Ω
p
U = (ΩpX)∨∨, and this is why I chose the word “reflexive” above. There is an

inclusion f∗Ω
p

X̃
⊆ j∗ΩpU .

Q3: When is there equality f∗Ω
p

X̃
= j∗Ω

p
U ?

This is certainly false if Xsing has codimension 1 components, and that is part
of the reason I imposed normality. Let me simply write “reflexive p-forms are
resolvable” if the answer to Q3 is positive, or equivalently Q2 has a positive answer
for every open of X. For p = n, the answer is given by an old result [KKMS].

Theorem 1.1 (Kempf, 1973). Reflexive n-forms are resolvable if and only if X
has rational singularities.
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Here is the state of the art from about 30 years ago.

Theorem 1.2 (Flenner, 1988). If p is less than codimXsing − 1, then reflexive
p-forms are resolvable.

Corollary 1.3 (Steenbrink-Van Straten). If X has isolated singularities, then re-
flexive p-forms are resolvable when p ≤ n− 2.

Flenner’s theorem was deduced with the help of Steenbrink’s vanishing theorem
[St]. In a slightly different, although related, direction, when the exceptional divisor
E of f has normal crossings and X is proper, Steenbrink’s theorem also implies that

Hq
E(X̃,Ωq

X̃
(logE)) = 0

for p+ q < codimXsing [A].
Now I want to talk about a recent advance.

Theorem 1.4 (Kebekus-Schnell, 2018). If reflexive k-forms are resolvable, then
reflexive p-forms are resolvable for all p ≤ k.

Corollary 1.5. If X has rational singularities, then reflexive forms are resolvable
in all degrees.

2. Applications and further remarks

2.1. Zariski-Lipman conjecture. The conjecture states that an algebraic variety
over a field of characteristic zero is smooth if its tangent sheaf TX = (Ω1

X)∨ is locally
free. Lipman [L] points out that this is false in positive characteristic. The surface
zp − xy = 0 is a counterexample.

Theorem 2.2 (Greb, Kovács, Kebekus, Peternell, 2011). If reflexive 1-forms are
resolvable and TX is locally free, then X is smooth.

Remark 2.3. Their result [GKKP, thm 6.1] is not stated this way, but this is what
they prove.

Proof. Assume that X is singular. Choose a singular point p ∈ X. By assumption,
there exists a basis of sections θ1, . . . , θn ∈ TX(V ) defined in a neighbourhood V
of p. We replace X by V for simplicity. Hironaka has constructed a resolution of
singularities f : X̃ → X which is functorial in a suitable sense. Among the features
of this resolution are that both automorphisms and infinitesimal automorphisms of
X lift to X̃. In fact, θi lift even though they are only infinitesimal automorphisms
away from the singularities. We can assume that the exceptional divisor of f is
a divisor E with normal crossings. Then a result of Greb, Kovacs, and Kebekus
[GKK, cor 4.7] shows that f∗TX̃(− logE) is reflexive. Therefore the sections θi lift

to sections θ̃i of TX̃(− logE). The vector fields θ̃i form a basis of TX̃−E , although

they do not give a basis of TX̃ , because they vanish along E. Let ωi ∈ H0(Ω1
X̃−E)

be the dual basis. By assumption ωi extend to holomorphic 1-forms, denoted

by the same symbols, on X̃. The relation ωi(θ̃j) = δij persists on X̃ (because

constant functions extend to constant functions). This forces θ̃i to be a basis of TX̃
contradicting what was said above. �

Corollary 2.4 (Flenner). X is smooth if TX is locally free and the singular set has
codimension at least 3.

Corollary 2.5 (Kebekus-Schnell). X is smooth if it has rational singularities and
TX is locally free.
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2.6. Forms on GIT quotients. Suppose that a reductive group G acts on a
smooth affine variety Y , then we can form the GIT quotient X = Y//G :=
SpecO(Y )G. If Y is not necessarily affine then the quotient need not exist in any
reasonable sense. Mumford [MF] gave various criteria for existence with varying
degrees of niceness. Let me refer to π : Y → X as a GIT quotient if

(1) It is a categorical quotient, i.e. it satisfies the standard universal property
[MF, pp 3-4]

(2) It is a uniform quotient, i.e (1) continues to hold after flat base change
(3) π is affine.

Note that the first condition uniquely determine X up to isomorphism, so we write
X = Y//G. A differential form α on Y is horizontal if α(v1, v2, . . .) = 0 for vector
fields vi, when one of them is G-invariant. Let (ΩpY,hor)

G be the sheaf of p-forms

which are invariant and horizontal. This notion was studied by Brion [Br] and
Jamet [J]. The following answers a question of Jamet.

Proposition 2.7. Suppose Y is a smooth variety with G-action such that the GIT
quotient X = Y//G exists. Then there are isomorphisms

f∗Ω
p

X̃
∼= π∗(Ω

p
Y,hor)

G ∼= j∗Ω
p
U

Proof. When Y is affine, Jamet [J] gives inclusions

f∗Ω
p

X̃
⊆ π∗(ΩpY,hor)

G ⊆ j∗ΩpU
Boutot [B] has proved that X has rational singularities. Therefore the above inclu-
sions are equalities by corollary 1.5.

In general, the assumptions imply that if {Xi} is an affine open cover of X, then
Yi = π−1Xi is an affine cover of Y such that Xi = Yi//G. So we are reduced to
the affine case. �

Let me propose a conjecture which would refine the last proposition. Recall
that Du Bois [dB] has refined Deligne’s construction to define an object ΩX in the
filtered derived category which realizes Deligne’s Hodge filtration on cohomology.

Conjecture 2.8. With X = Y//G as above, ΩX is isomorphic to (Ω•Y,hor)
G with

its stupid filtration.

As further evidence, note that it is true when G is finite [dB, §5], or when
G = Gnm and X is toric [GNPP, chap V, §4].

2.9. Mixed Hodge structure. When X is an algebraic variety, Deligne [D] has
constructed a canonical mixed Hodge structure on H∗(X). Let F denote the as-
sociated Hodge filtration. I will start with a result which is independent of [KS],
although it seems to complement those results quite nicely.

Theorem 2.10. Suppose that X is a proper algebraic variety. Then F pHp(X,C)

can be identified with a subspace of H0(X̃,Ωp
X̃

). Suppose additionally that X is

normal and that Rif∗OX̃ = 0 for 0 < i ≤ k, then for all p ≤ k, then

H0(X̃,Ωp
X̃

) = F pHp(X,C)

In other words, F pHp(X) is the space of resolvable p-forms.
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Proof. Fix p ≤ k. We use the “blow up sequence”

Hp−1(E)→ Hp(X)→ Hp(X̃)⊕Hp(S) . . .

where S = Xsing. Since F pHp−1(E) = 0, we see that

0→ F pHp(X)→ F pHp(X̃)⊕ F pHp(S)→ F pHp(E)

is exact. It also follows that F pHp(X) ∩Wp−1H
p(X) ⊆ F pHp(S) ∩Wp−1H

p(S).
Therefore by induction on dimension we see that F pHp(X) ∩ Wp−1H

p(X) = 0.
Thus to prove the theorem, it suffices to prove that the map

(1) F pGrWp H
p(S)→ F pGrWp H

p(E)

is always injective, and an isomorphism under the additional hypothesis. We can
construct a commutative diagram

E

��

Ẽoo

��
S S̃oo

where the horizontal maps are desingularizations, and the vertical maps are surjec-
tions. By an argument similar to the one used above, or by [D, 8.2.5], GrWp H

p(S)

(resp. GrWp H
p(S) ) embeds into the space of holomorphic p-forms on S̃ (resp.

Ẽ). Injectivity of (1) now follows from the injectivity of pullback of p-forms under

Ẽ → S̃.
Now suppose thatX satisfies the additional assumptions of normality etc. Choose

an analytic neigbourhood S ⊂ T ⊂ X such that T deformation retracts to S, and
such that the preimage T ′ = f−1T deformation retracts to E. Since Rif∗OX̃ = 0

for 0 < i ≤ k, we have Hp(T,O) ∼= Hp(T ′,O). Let Ω0
S ∈ Db

coh(OX) be the
zeroth graded piece of the (analytic) du Bois complex [dB]. Here are the key
properties. There is a canonical map CS → Ω0

S factoring through OS , such that
Hp(S,C)→ Hp(S,Ω0

S) is the surjective projection Hp(S)→ Gr0
FH

p(S). A similar
statement holds on E. Since E has normal crossing singularities, it is known that
OE ∼= Ω0

E . Putting these facts together, we get a commutative diagram

Hp(E,C) Hp(T ′,C)
∼oo p // Hp(T ′,O)

r // Hp(E,O)
∼ // Hp(E,Ω0)

Hp(S,C)

OO

Hp(T,C)
∼oo //

OO

Hp(T,O) //

∼=

OO

//

s

88

Hp(S,O) //

OO

Hp(S,Ω0)

ρ

OO

such that the composite map Hp(E,C) → Hp(E,Ω0) is surjective. It follows that
r ◦ p is surjective, and therefore also s, and hence also ρ are surjective. Thus we
have proved that

Gr0
FH

p(S)→ Gr0
FH

p(E)

is surjective. Therefore we have a surjection on the pure weight p parts

F 0GrWp H
p(S)→ F 0GrWp H

p(E)

Taking complex conjugation shows that (1) is also surjective.
�
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Corollary 2.11. If X is proper with rational singularities, then

H0(X̃,Ωp
X̃

) = F pHp(X,C)

holds for all p

First Proof. This is an immediate corollary of the theorem. �

Second Proof. I will give an alternative argument, which explains how this ties in
with the ideas of [KS]. A result of Lee and Huber-Jörder [HJ, thm 7.6] identifies

(2) F pHp(X) ∼= H0
h(X,Ωph)

where Ωph is the sheafication of Kähler differentials in the Voevodsky’s h-topology.
One the other hand, [KS, cor 1.11] shows that

(3) H0
h(X,Ωph) = {reflexive p-forms}

This proves the corollary.
Let me make a few more comments, since I have swept all the subtleties under

the rug. Concretely, H0
h(X,Ωph) can be identified with the space of α ∈ H0(X̃,Ωp

X̃
),

such that

(4) φ∗p∗1α = φ∗p∗2α

for some resolution φ : X̃2 → X̃ ×X X̃ with projections pi : X̃ ×X X̃ → X̃. But
this is exactly the description of F pHp(X) one gets by computing the mixed Hodge
structure using a smooth hypercover as in [D]. This shows (2). The second equality
(3) is more delicate. One needs to check (4) for reflexive forms. The difficulty lies

in the fact that X̃2 may have components mapping to Xsing. I refer to section 14
of [KS] for this part of the argument. I should add that their result is local, so it is
stronger than what follows from the first proof. �

Proposition 2.12. If X is a proper algebraic variety with rational singularities,
then there are isomorphisms

{reflexive p-forms on X} ∼= F pHp(U,C) ∼= F pHp(X,C)

Proof. We can assume that X̃ contains U , and that the complement is a divisor E
with simple normal crossings. We have by [D]

F pHp(U,C) = H0(X̃,Ωp
X̃

(logE))

So we have a diagram

F pHp(U)
⊆ // {ref. p-forms}

=

��
F pHp(X̃)

restriction

gg

This gives the first isomorphism.
The isomorphism

{ref. p-forms on X} ∼= F pHp(X,C)

follows from the previous corollary. �
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2.13. Log forms. Kebekus and Schnell have also proved a log version of their
theorem. Using this together with a theorem of Kovacs-Schwede-Smith [KSS], it
follows that the above isomorphism

{ref. p-forms on X} ∼= F pHp(U,C)

holds when X is proper with normal CM Du Bois singularities.

3. Proof of theorem 1.4

They give two proofs. I will outline the shorter one. This is based on the
following criterion.

Theorem 3.1 (Kebekus-Schnell). A reflexive p-form α on X is resolvable if and
only if for every open V ⊂ X and Kähler form β (resp. γ) of degree n − p (resp.
n− p− 1 ) on V , α ∧ β and dα ∧ γ are resolvable, in the sense that they extend to
f−1V .

Proof of theorem 1.4. Its enough to prove that a reflexive k−1 form α is resolvable.
Since the problem is local, we may assume that X embeds into a ball in Cn+c.
Choosing Kähler forms β, γ of degree n− k + 1 and n− k on V ⊆ X, theorem 3.1
tell us that we need to check that α∧ β and dα∧ γ are resolvable. There is no loss
in assuming that V = X. Choose coordinates zi on the ball. Then we can expand

β =
∑

dzi ∧ βi

By assumption α ∧ dzi and dα are resolvable. It follows that
∑
α ∧ dzi ∧ βi and

dα ∧ γ are resolvable. �

4. Hodge modules

It remains to prove theorem 3.1. The proof uses Hodge modules [S]. I will
summarize the basic facts needed. Let Y be a complex manifold.

(1) A (pure) Hodge module on Y consists of a regular holonomic DY -module
M with an ascending good filtration F , and a perverse sheaf L of Q-vector
space such that L⊗ C and M correspond under Riemann-Hilbert:

DR(M) := (M
∇→ Ω1

Y ⊗M
∇→ Ω2

Y ⊗M . . .)[dimX] ∼= L⊗ C

Note that the choice of isomorphism is part of the datum. The collection
of Hodge modules is subject to some inductive axioms which are too com-
plicated to state here, except for the base axiom: Hodge modules over a
point are the same thing as Hodge strucutres. Unless there is a danger of
confusion, we will conflate M with the Hodge module (M, . . .).

(2) Note (for experts), I will assume that Hodge modules are polarizable. It
follows that the category HM(Y ) of Hodge modules is abelian and semisim-
ple. This can be decomposed into a sum HM(Y ) =

⊕
HM(Y,w) of the

category Hodge modules of weight w. HM(pt, w) is the category of pure
polarizable Hodge structures of weight w. The perverse sheaf assocated to
a simple module is the intersection cohomology complex associated to the
local system underlying an irreducible polarized variation of Hodge struc-
ture supported on an irreducible subvariety. The converse statement is also
true. If X ⊂ Y is a closed analytic space, then HM(X) can defined as the
category of Hodge modules, all of whose simple factor are supported in X.
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Up to equivalence HM(X) depends only on X and not Y . (For D-modules,
this is Kashiwara’s theorem.)

(3) There is a good notion of direct images of Hodge modules f+ : Db(HM(X))→
Db(HM(Z)) under projective morphisms f : X → Z. We have an ex-
act functor to the constructible derived category rat : Db(HM(X)) →
Db
c(X,Q), which extends (M,F,L) 7→ L. If M = (M,F,L) ∈ HM(X),

then the following compatibilities hold

Rf∗rat(M) ∼= rat(f+M)

Rf∗GrFpM ∼= GrFp DRf+M
A version of the decomposition theorem of [BBD] holds for Hodge modules.
This says that if M ∈ HM(X), then

f+M ∼=
⊕

Mi[i]

where Mi are Hodge modules on Z.

5. Proof of theorem 3.1

Working locally, we can assume that X embeds into a ball Y ⊂ Cn+c. So c is
the codimension. Let S = Xsing and let f : X̃ → X be a resolution of singularities.

Note that this map, as well as the composition (also called) f : X̃ → Y , can be
assumed to be projective. The sheaf QX̃ viewed as a variation of Hodge structure
of weight 0 corresponds to Hodge module with D-module OX̃ and filtration

FpOX̃ =

{
0 if p ≤ −1

OX̃ otherwise

The de Rham complex is

DR(OX̃) = (OX̃ → Ω1
X̃
→ . . .)[n]

We have
GrF−p

∼= Ωp
X̃

[n− p]
Therefore from the discussion in the previous section, we obtain

(5) Gr−pDR(f+OX̃) ∼= Rf∗GrF−pDR(OX̃) ∼= Rf∗ΩpX̃ [n− p]
and

(6) f+OX̃ = M ⊕M ′

where M is the sum of simple components supported on all of X, and M ′ is the
sum of components supported in S. The previous discussion also shows that M is
the Hodge module corresponding to the intersection cohomology of X.

Proposition 5.1.
f∗Ω

p

X̃
∼= Hp−nGrF−pDR(M)

Proof. By (5) and (6), we have

f∗Ω
p

X̃
∼= Hp−nGrF−pDR(M)⊕Hp−nGrF−pDR(M ′)

Now using the fact that f∗Ω
p

X̃
is torsion free, we can conclude that both summands

are torsion free. But the second summand is supported in S, so it must be zero. �

Another fact needed is the following



8 DONU ARAPURA

Lemma 5.2. Fc−1M = 0 and each FiM is a torsion free OX-module.

Proof. The vanishing is a formal consequence of properties of Hodge modules. See
[S, §3.2, 5.4]. For the last part, it is enough to observe that M is a torsion free,
because it can be realized as a submodule of OX(∗D) for a Cartier divisor D ⊇
S. �

When the previous lemma and proposition are combined, we obtain a key formula

(7) f∗Ω
p

X̃
= ker : Ωp+cY ⊗ FcMX

∇̄→ Ωp+c+1
Y ⊗GrFc+1M

Here ∇̄ is map induced by the connection ∇ associated to the D-module structure.
As a consequence, we see that there is a bijection which associates to a holomorphic
p-form α on Y , a section α̃ ∈ H0(Y,Ωp+cY ⊗ FcM) such that ∇α̃ ∈ H0(Y,Ωp+c+1

Y ⊗
FcM). A calculation shows

Lemma 5.3. If α is as above and β ∈ H0(Y,ΩkY ), then

d̃α = ∇α̃
α̃ ∧ β = α̃ ∧ β

Lemma 5.4. A form α ∈ H0(Y − S,ΩpY−S) extends to Y if and only if α̃ and ∇α̃
both extend to sections of Ωp+c ⊗ FcM and Ωp+c+1 ⊗ FcM respectively over Y .

Proof. One direction is clear. Suppose α̃ and ∇α̃ extend to sections α′ and γ′ of
Ωp+cY ⊗FcM and Ωp+c+1

Y ⊗FcM . Then∇α−γ′, which is a section of Ωp+c+1
Y ⊗Fc+1M ,

vanishes on U . So it must vanish on Y because the sheaf is a torsion free OX -
module. Therefore α′ = α̃′′ for some form α′′ on Y extending α.

�

Lemma 5.5. A section

ξ ∈ H0(Y − S,Ωp+cY ⊗ FcM)]

extends to H0(Y,Ωp+cY ⊗FcM) if and only if for any β ∈ H0(Y,Ωn−pY ), ξ∧β extends

to H0(Y,Ωn+c
Y ⊗ FcM).

Proof. Applying (7) when p = n, implies that

FcM = (f∗ωX̃)⊗ ω−1
Y

is generically a line bundle on X, and in particular a line bundle on X−S. We can
express

ξ =
∑

dzI ⊗ µI
where

dz{i1,i2,...} = dzi1 ∧ dzi2 ∧ . . . , i1 < i2 < . . .

and the µI ’s are sections H0(X−S, FcM). Taking β = dzJ , with J = {1, . . . in+c}−
I, and applying the hypothesis shows that µI extends to X. �

Proof of theorem 3.1. Suppose α ∈ H0(U,ΩpU ) is a regular form satisfying the as-
sumptions of the theorem. By lemma 5.4, we need to check that α̃ and ∇α̃ extend
to Y . By lemma 5.5, it is enough to check that α̃∧β and ∇α̃∧γ extend, for Kähler
forms β, γ. These conditions can seen to be equivalent to the original assumptions
about α by lemma 5.3.

�
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